
Pic Micro PascalPic Micro Pascal VV1.6
User Manual

Doc date: 2011-05-31, revision: A.

Author: Philippe Paternotte (PPA)

PIC MICRO PASCAL V1.6 - USER MANUAL

Summary
1 Overview...6

1.1 Legal stuff... 7
1.2 BSD License... 7

2 Operation..8
2.1 Operating system... 8
2.2 MPLAB® suite.. 8
2.3 Console version.. 8

2.3.1 Command line usage..8
2.3.2 Message output from PMP compiler...9
2.3.3 Exit code... 9

2.4 Windows version.. 10
2.4.1 PMP Project ... 12

2.4.1.1 Project general options..12
2.4.1.2 Compiler options...13
2.4.1.3 Assembler options...14
2.4.1.4 Linker options..14
2.4.1.5 Processor options...14
2.4.1.6 Version and comments..15

2.4.2 Code Explorer... 16
2.4.3 The tools menu.. 17
2.4.4 Syntax highlighting and other editor options..19

2.5 Generated files... 21
2.6 Configuration file... 22

3 Language features..23
3.1 BNF representation in this document...23
3.2 Keywords.. 23
3.3 Constant formats.. 24
3.4 Program structure... 25
3.5 Unit structure.. 26
3.6 Comments.. 27
3.7 Directives.. 27

3.7.1 $C | $CODEGEN - PLC mode code..27
3.7.2 $CONFIG - Configuration bits...27
3.7.3 $DEPRECATED – Define a unit, procedure or function as obsolete.................................28
3.7.4 $EEPROM - Define useable EEPROM area..28
3.7.5 $EOL – Define end of line behavior...28
3.7.6 $EXTENDED – Enable / disable extended Pascal syntax - NEW! (V1.6.0).......................28
3.7.7 $FREQUENCY - Processor frequency..28
3.7.8 $IDLOC Define user ID bytes..29
3.7.9 $I | $INCLUDE - Include source file...29
3.7.10 $INIT | $INITIALIZE - Define start-up initializations...30
3.7.11 $INTERRUPTS – Enable / disable / define interrupts..30
3.7.12 $JUMPS – Define jumps range...31
3.7.13 $O | $OPTIM | $OPTIMIZE - Define optimization mode..31
3.7.14 $OPTIMIZE_PARAMS - Define parameter passing optimization mode...........................31
3.7.15 $OSCCAL – Activates or deactivates OSCCAL processor feature..................................31
3.7.16 $P | $POINTERS - Define pointers size..32
3.7.17 $POP – Restore compiler options ..32
3.7.18 $PROCESSOR - Define processor...32
3.7.19 $PUSH – Save compiler options...33
3.7.20 $RESERVED RAM | EEPROM - Specify a memory region as unusable........................33
3.7.21 $SCRIPT – Define the linker script to use...33
3.7.22 $S | $SPACE - Switch memory allocation to RAM or EEPROM......................................33
3.7.23 $STRINGS - Set default string size...34

Document revision: A - Page 2/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.24 $UERROR - Generate a compiler error...34
3.7.25 $UWARNING - Generate a compiler warning...34
3.7.26 $V $VARIABLES Define the memory region for RAM variables......................................34
3.7.27 $VECTORS - Define reset and interrupt vectors...34
3.7.28 $W | $WARN | $WARNING - Define a compiler warnings behavior................................35
3.7.29 Conditional compilation...36

3.8 Configuration bits declaration as CONST...38
3.9 Identifiers.. 38
3.10 Constant declaration... 39

3.10.1 Special constants behaviors..40
3.10.2 Pseudo SET, IN keyword...41
3.10.3 System constants and pseudo variables...42

3.11 Type declaration... 43
3.11.1 Pointer types.. 45
3.11.2 Records... 45

3.11.2.1 Dynamic records..46
3.12 Variables declaration.. 48

3.12.1 Special behaviors..48
3.12.2 Special considerations about memory allocation...49
3.12.3 Some VAR Examples..49
3.12.4 Banking... 50
3.12.5 Variables internal names (as seen by the assembler)...50
3.12.6 Declaration at an absolute address...50
3.12.7 Declaration as VOLATILE..50
3.12.8 Special usage of bit number or reference..51

3.13 SFR (Special Function Register) declaration..51
3.14 Procedure and function declaration..52

3.14.1 Function RETURN statement - NEW! (V1.6.0):...53
3.14.2 Side effect with string buffer and function calls..53
3.14.3 Parameter passing convention..54
3.14.4 Open array parameters...55
3.14.5 Forward procedures and functions..55
3.14.6 External procedures and functions..56

3.14.6.1 Memory allocation in assembler modules...56
3.15 Interrupt special procedures...57
3.16 Main program block.. 58
3.17 Unit initialization block.. 58

4 Statements..59
4.1 Assignments and expressions..59

4.1.1 SHR & SHL "normal" behaviors...59
4.1.2 Divide operator /..60
4.1.3 Logical operators...60
4.1.4 Operand size promotion, signed or unsigned..60
4.1.5 Bit results and related special behaviors...61
4.1.6 Bit expressions and statements...61

4.2 WITH statement.. 62
4.3 CASE statement... 62
4.4 IF statement... 63
4.5 ELSEIF statement - NEW! (V1.6.0)..63
4.6 WHILE statement... 64
4.7 REPEAT statement... 64
4.8 LOOP statement... 64
4.9 FOR statement... 65
4.10 FOR iterator NEW! (V1.6.0)..67
4.11 BREAK statement... 68
4.12 CONTINUE statement.. 68

Document revision: A - Page 3/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.13 ASM statement... 69
4.14 Implied PIC statements..70
4.15 Built-in functions... 70
4.16 Built-in procedures.. 73
4.17 Branching statements... 80
4.18 Code optimization considerations...80
4.19 Floating point ... 81

4.19.1 Overview... 81
4.19.2 Supported FP built-in functions...81
4.19.3 FP flags... 82

4.20 Dynamic Memory Allocation...83
4.20.1 Overview... 83
4.20.2 How it works.. 83
4.20.3 Error treatment..83

5 Libraries..84
5.1 Overview.. 84
5.2 Global usage rules.. 84
5.3 The LCD unit.. 85

5.3.1 Supported features..85
5.3.2 Pin assignments..85
5.3.3 Conditional compilation...85
5.3.4 Constants.. 86
5.3.5 Types... 86
5.3.6 Interface.. 87

5.4 The KS107_108 (former GLCD) unit..88
5.4.1 Supported features..88
5.4.2 Conditional compilation...88
5.4.3 Pin assignments..88
5.4.4 Constants.. 88
5.4.5 Types... 89
5.4.6 Variables.. 89
5.4.7 Interface.. 89

5.5 The SERIAL unit... 90
5.5.1 Supported features..90
5.5.2 Conditional compilation...90
5.5.3 Constants.. 90
5.5.4 Types... 90
5.5.5 Variables.. 90
5.5.6 Interface.. 90

5.6 The A2D unit... 91
5.6.1 Supported features..91
5.6.2 Conditional compilation...91
5.6.3 Constants.. 91
5.6.4 Types... 91
5.6.5 Variables.. 91
5.6.6 Interface.. 91

6 Compiler messages..92
6.1 Error messages.. 92
6.2 Warning messages... 94

7 PMP development issues...95
7.1 Known limitations.. 95
7.2 To do list... 95
7.3 Not to do list... 95
7.4 Limited support... 95
7.5 About the author .. 95
7.6 Development tools and contributions..96

Document revision: A - Page 4/101

PIC MICRO PASCAL V1.6 - USER MANUAL

7.7 Revision history.. 96
8 Index..98
9 User annotations..101

Document revision: A - Page 5/101

PIC MICRO PASCAL V1.6 - USER MANUAL

1 Overview
Pic Micro Pascal (aka PMP) is a language tool that is targeted for small and medium Microchip PIC family of
micro-controllers (PIC10, PIC12, PIC16 and PIC18).

PMP is not a commercial compiler that does everything, but is intended to assist developers with the
generation of small to medium (both in scope and in code size) applications for the PIC.

Major guidelines of development are:

 Try to be as close as possible to the standard TP / Delphi syntax.

 Do not use special built-in functions and procedures to interface hardware registers; these registers
are accessed directly. So the Pascal source code is not portable to other manufacturer processors, but
the target is PIC, and will stay PIC!

 Try to make the finest possible code optimizations (well, this is and endless work).

In the present implementation, PMP supports multiple files compilation, by include directives and by a per
unit concept, as in TP or Delphi.

PMP supports simple records, bit booleans, signed and unsigned types, long integers, one dimension arrays,
strings and floating point variables or operations (floating point is only supported for PIC16, PIC 16 enhanced
and PIC18 since the FP code consumes too much).

The philosophy of PMP is to globally limit the number of special keywords or built-in functions and
procedures for manipulating special PIC hardware. Ports and other special SFRs are accessed directly (as
PORTC or TRISC for example).

PMP does not include an assembler or linker; it is designed to work with MPAsm™ / MPLink™ from MPLAB®

suite, and uses their .inc and .lkr files for standard registers definitions and processor / memory mapping.

PMP was initially inspired by the MPTINY implementation by Thomas J. LeMense and "Let's Build A
Compiler" series written by Jack Crenshaw in 1988 through 1992. A web search for "Crenshaw" and
"compiler" should help you find where this excellent reference may be found.

The PMP scanner was made with the help of TPLex, a Turbo Pascal implementation of LEX. TPLex was
made possible by Albert Graef and Berend de Boer. Information on this program and a companion port of
Yacc may be found on the TPLY homepage: http://www.musikwissenschaft.uni-mainz.de/~ag/tply. There is
also a Delphi port.

The PMP floating point engine is derived from the PicFloat libraries from Mike Gore.

PMP has an IDE, build around the SynEdit package (http://synedit.sourceforge.net).

PMP is still under construction. Source code is not available yet.

PMP main core (not including std libraries, IDE and low level code generators) is about 100K lines of code.

➢ Note that there's an index at the end of this document!

Document revision: A O V E R V I E W - O V E R V I E W Page 6/101

http://www.musikwissenschaft.uni-mainz.de/~ag/tply
http://synedit.sourceforge.net/

PIC MICRO PASCAL V1.6 - USER MANUAL

1.1 Legal stuff
The PMP executables contained in the archive are FREE and cannot be sold or modified.
Other PMP associated files (configuration files and source files) contained in the archive are FREE and
cannot be sold but may be modified for user needs, without notification.

PMP is provided as is, without any warranty of any kind, express or implied; in particular, I do not guarantee
that the software is free of bugs, or fits some particular purpose, and I take no responsibility for damages or
any other consequences of its use.

PIC™, MPLAB®, MPAsm™ and MPLink™ are registered trademarks of Microchip Technology Inc., Chandler, AZ
(http://www.microchip.com), and are a family of programmable micro controllers and a compatible IDE,
assembler and linker programs, respectively.

1.2 BSD License
In addition to the terms above, binary or source files provided in the packages are provided under a modified
BSD license (note that some source files may have more than one copyright holder):

Copyright (c) 2005-2010, Philippe Paternotte

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistribution of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistribution in binary form may reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the PMPCOMP nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Some third party source files provided in the package may have their own copyright notice and their terms
must be retained too.

Document revision: A O V E R V I E W - B S D L I C E N S E Page 7/101

http://www.microchip.com/

PIC MICRO PASCAL V1.6 - USER MANUAL

2 Operation

2.1 Operating system
PMP is a 32 bits Windows program, so it cannot run in pure MS/DOS or old 16 bit Windows (even for the
command line version).

It has been tested on Windows 2000 and Windows XP SP3.

PMP compiler has no memory limitations: all strings and tables are dynamic, and so PMP is only limited by
the OS limits.

2.2 MPLAB® suite
PMP is intended to be used with the Microchip Technology MPLAB® suite installed.

It cannot compile anything if it is not able to find processors include files and linker mapping files,
along with MPASM™ and MPLINK™ programs.

2.3 Console version
Console version is no more distributed since previous versions had not been updated to integrate new PMP
rewriting (a release is scheduled).

Nevertheless, hereafter this document refers to it and contains some information about its interfaces
(managing a future console version that may be released again).

2.3.1 Command line usage
The PMP console version uses command line arguments. It accepts the following syntax:

PMP <source file> <output file> <options>

Arguments order does not matter, but <source file> is always the first given file name.

The <source file> may be any valid filename. If the file extension is omitted, PMP assumes that the source
file extension is ".pas".

The <output file> is optional; if it is omitted, PMP generates a file with the same name as the source file, but
with an ".asm" extension, in the same directory.

The options supported at this time (not case sensitive) are as follows:

/c generate commented code (defaults to off)
/s generate symbol information (defaults to off)
/v generate verbose source lines (defaults to off)
/w all warnings off (defaults to on)
/wn warning n off
/i<path> specify a global path for include files (default is the source file directory)
/p<processor> defines processor part number; this name must match MPAsm™ syntax. It is mandatory to

compile a unit.
/f<frequency> defines processor operating frequency. It is mandatory to compile a unit.
/d<Identifier> defines a conditional compilation identifier.
/? display usage information
/h same as /?

Note that include files are always searched in the source file directory before to search in the global path if
any.

For MPAsm™ file search, PMP finds the path in the registry. Path for processor include file is not emitted in
.asm file for MPAsm™ include directive since it has its own path search mechanism.

Document revision: A O P E R A T I O N - C O N S O L E V E R S I O N Page 8/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.3.2 Message output from PMP compiler
The PMP console version outputs messages to the screen and to an .erp file witch syntax is similar to the
MPAsm™ error file syntax.

2.3.3 Exit code
In the current implementation Exit Code is 0 if no warnings or errors, 1 if warnings but no errors, 2 if there are
errors.

Document revision: A O P E R A T I O N - C O N S O L E V E R S I O N Page 9/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4 Windows version
The PMP Windows version starts directly with the PMP IDE.

This version may accept one command line argument that is a project file name (.pmp) to open.

Here is a typical screen shot of PMP IDE (Pascal file) with “old fashioned” colors:

And the same one with Delphi 2006 colors:

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 10/101

PIC MICRO PASCAL V1.6 - USER MANUAL

Here is a typical screen shot of PMP IDE (assembler file):

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 11/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4.1 PMP Project
A project is stored in a .pmp file that is internally an .ini file. This file stores all information about the project.

2.4.1.1 Project general options

The default part number is the reference that is used by PMP if
there is no “processor” directive in the main program, or if a unit
is compiled separately.
The default processor frequency is the value that is used by
PMP if there is no “frequency” directive in the main file, or if a
unit is compiled separately. This field may be grayed if the
processor has a fixed frequency.
The main file is the root file of the project, typically the “program”
file.

PMP includes automatically all the files listed in “uses” or “external” declarations, but other files may be added.
The additional files list should contain the list of all these other files and it is used to build the project.
It may include .asm files (that should be assembled) or object files (passed directly to the linker).

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 12/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4.1.2 Compiler options

Include and unit paths is the list of paths (separated by a
semicolon) that the compiler searches for an include file ($I
directive) or a unit file (USES section).

Output path is the path where the compiler will output all the
generated files. This is also the sources path for the assembler.

Toggle options :

Warnings off: {$W-} Suppress all warnings from the compiler; for individual warnings, see § 3.7.

Large pointers: {$POINTERS LARGE} Use large pointers (16 bits). For PIC18 and enhanced PIC16 this is
default and cannot be changed. For other devices, it may be useful to use 8 bits pointers in small
applications, since this generates smaller and faster code and uses less ram.

Strict type checking: {$STRICT} When activated, PMP will use strict type checking as a normal Pascal
compiler.

Complete boolean evaluation: {$B+} Defaults to ON; if ON, every operand with AND and OR operators is
guaranteed to be evaluated, even when the result of the entire expression is already known; if OFF,
evaluation stops as soon as the result of the entire expression becomes evident in left to right order of
evaluation.

Optimizer mode: Using the “fastest code” mode {$O SPEED} generates less calls to standard subroutines
that are generated “inline”; this option consumes more program memory. Using the “smaller code” mode {$O
MEMORY} generates systematically the calls to standard subroutines; average program memory size is
shorter, but execution speed is a bit slower. Using the “Off” mode {$O OFF} disables any optimization
functionality (not recommended): this is for debugging purpose since the generated code is a bit coarse.

Verbose .asm output: The assembler output from the compiler will contain the Pascal source file echo and
compiler information.

Commented .asm output: The assembler output from the compiler will contain comments on each assembler
line of code.

Symbol table and memory usage in .asm output: Self commented.

Conditional defines : This list contains all conditional defines that may be used in the project. If an item is
checked, it will be Defined for the compiler and cannot be re-Defined in code.

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 13/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4.1.3 Assembler options

Assembler executable is the full path of the assembler that will
be invoked to assemble assembly source files generated by
PMP. By default this is the path of the MPLAB® general purpose
assembler (typically MPAsmWin, found in the MPLAB® registry
entries).
Default include path is the path of the assembler include files.
Mainly this is where the assembler will find the .inc files that
define all processors registers and constants, or generally where
it will find any “include” file. PMP searches MPAsm™ files
relatively to the MPAsm™ executable path.
Output path is the path where the assembler will produce the
relocatable object files that will be the default path for the linker
inputs.
Assembler options may contain additional assembler options.
Default is options that are necessary for assembling PMP files.

2.4.1.4 Linker options

Linker executable is the full path of the linker that will be invoked
to link all the files of the project. By default this is the path of the
MPLAB® general purpose linker (typically MPLink™, found in the
MPLAB® registry entries).
Default include path is the path of the linker include files. Mainly
this is where the linker will find the .lkr files that define the
processors memory maps, or generally where it will find any
“include” file. PMP searches MPLink™ files relatively to the
MPLink™ executable path.
Default library path is the path of the linker library files. Mainly
this is where the linker will find the .lib files used in the project.
Output path is the path where the linker will produce the output
files.
Linker options may contain additional linker options. By default
no additional option is necessary for PMP projects.

The "Use debug mode for linker scripts" check box forces the compiler to use the debug version of the .lkr script file, that
reserves special memory areas for ICD usage. If the "Use new generic scripts" is checked, PMP will use the new scripts
introduced since V8.30 of MPLAB, otherwise the "normal" script or the "i" version are used depending on the debug
mode check box.

2.4.1.5 Processor options

This tab lists all the selected processor's configuration bits and
their possible values. The possible values are displayed and
selected by right clicking on the value.

Warning: On PIC18 processors the extended instruction set
must not be selected. PMP code is not compatible with
extended mode.

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 14/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4.1.6 Version and comments

This tab gives access to the project's version information and
comments.
Comments is free length text, saved with the project; PMP does
not do anything with this text.

The build number may be auto-incremented after each explicit
successful full build.

The version information may be automatically hard wired to the
processor's IDLOCS so that this version information will be
written to the device. The build written value is the value during
the build, before the optional auto-incrementation.

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 15/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4.2 Code Explorer
PMP IDE maintains a code explorer tree at the form's left (may me disabled in the "Tools" menu):

This tree presents all the project's constants, types, variables and procedures/functions used in the project.
By clicking on an object, the source code where this object is defined may be displayed.

Warning: All information is extracted from the last compilation and so may be not accurate if changes had been made
in the sources.

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 16/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4.3 The tools menu
PMP has a tools menu that may be fully configured (as in TP or Delphi):

The menu option opens the configuration form:

In this short form, items may be moved up and down with the two small blue buttons.

The “Add” and “Modify” buttons extend the form:

The “Title” field may contain a standard “&” character to give the keyboard shortcut.

The “Parameters” field may contain macros as in TP and Delphi.

The “Show macros” button extends the form at bottom:

The “OK” button validates the modifications and returns to the short form.

Available macros:

Some macros are equivalent to TP/Delphi:

$EDNAME returns the current edited file name, fully qualified (full path), with double quotes.

$SAVE requests a save of the current file before further processing.

$SAVEALL requests a save of all files before further processing.

$PATH() returns only the directory part of the file name between the parenthesis. Warning: it is not
quoted.

$NAME() returns only the name part of the file name between the parenthesis. Warning: it is not quoted.

$EXT() returns only the extension part of the file name between the parenthesis. Warning: it is not
quoted.

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 17/101

PIC MICRO PASCAL V1.6 - USER MANUAL

Other macros are specific to PMP:

$PRJNAME returns the current project file name, fully qualified (full path), with double quotes.

$ASMPATH returns the compiler output path as defined in the current project options. Warning: it is not
quoted.

$HEXPATH returns the linker output path as defined in the current project options. Warning: it is not quoted.

$PROCESSOR returns selected default processor.

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 18/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.4.4 Syntax highlighting and other editor options
PMP has syntax highlighting for several types of files (Pascal, C/C++, VB, ASM, …). The appropriate pattern
is loaded according to the file extension; the user may change the colors and several behaviors.

All options may be modified through the Tools menu | "Editor options for this file type..." command that opens
the options dialog:

General display options:

Some tips:
Bookmarks may be set by keyboard: Ctrl-Shift-n sets the bookmark
n, where n is a digit key 0,,9. Then Ctrl-n jumps to the bookmark n.
The result of several of these options may be shown directly by
switching to the Highlighter tab, witch displays a mini editor.

Features options:

Some tips:
"Right click moves cursor" is obsolete since right click displays a pop-
up menu that contains functions as " do xxx on the yyy at current
cursor location", so right click always moves the cursor.

Keyboard commands:

This tab may be used to modify all keyboard commands.

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 19/101

PIC MICRO PASCAL V1.6 - USER MANUAL

Syntax highlighting:

This tab may be used to modify all colors and appearance of the
editor for the current type of file.

Clicking into the mini editor will update the selections according to the
type of element recognized at the cursor position. Changes in the
selections are shown immediately in the mini editor.

Some tips:

For Pascal highlighting, if the machine has a Delphi programming environment installed, the "Use settings from" feature
allows settings to be imported from the Windows registry records for these IDEs, so that you can select the scheme you
already use in your Delphi (for my personal use as shown, this is the old fashioned TP scheme).

Also for Pascal highlighting, the local PMP settings may be saved to the registry and restored.

For general highlighting, there are check boxes for selecting how comments should be treated (not shown here); several
comment types may be active at a time.

Current file type scheme is saved in a separate .ini file upon dialog validation (OK button).

Document revision: A O P E R A T I O N - W I N D O W S V E R S I O N Page 20/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.5 Generated files
PMP generates several files for each Pascal program or Unit that is compiled:

 A .asm file that contains the generated assembler language source file.

 A .sym file that contains information about a compiled unit for memory allocation and global
variables (not readable by an editor).

PMP generates also a pmp.lkr file that serves as a relay for calling the linker.

PMP generates also a <project name>.tree file that stores the project symbols tree for the code
explorer.

The windows version of PMP generates several .ini files that tracks user setup for each file type (syntax
highlighting …) and a main .ini file that holds global user settings and opened files, and a .pmp project file
that holds user setup for the project.

For the MPAsm™ and MPLink™ generated files, see MPLAB® documentation.

Document revision: A O P E R A T I O N - G E N E R A T E D F I L E S Page 21/101

PIC MICRO PASCAL V1.6 - USER MANUAL

2.6 Configuration file
PMP uses a configuration file named processors.cfg that must be in the same directory as the PMP
executable.

This file has an .ini structure; it is used to describe special behaviors of processors that cannot be
deducted from the MPAsm™ and MPLink™ files.

It can be customized to declare new processors than have not been evaluated yet.

If a processor is not explicitly described in the configuration file, it is assumed to have no specific behaviors
and will use defaults.

The structure of each entry is:

[Processor Part Number]
Item_1=Value_1
…
Item_n=Value_n

Or:

[Processor Part Number Family]
Item_1=Value_1
…
Item_n=Value_n

Where “Processor Part Number Family” may contain “?” or “*” wild-card characters to match several
processors. In this case, the rule is that a processor name that matches a family name will primarily default to
this family parameters. If the processor has specifics regarding its family, these specifics (differences from
the family) are defined further in a specific section.

Item Type Default Comment
StackSize Integer 0 Defines the hardware stack deep; some processors have

only a 2 levels stack. 0 if standard 8 levels stack.
NoReturn Boolean 0 Defines if there is no return instructions (only retlw x

instructions)
NoAddlw Boolean 0 Defines if there is no addlw / sublw instructions
NoInterrupts Boolean 0 Defines if there is no interrupts
Call256 Boolean 0 Defines if calls and PCL assignments are only possible to the

first 256 program locations.
FixedFrequency Integer 0 Defines the processor fixed clock frequency; in this case the

$FREQUENCY compiler directive is forbidden.
HasUart Boolean 0 Defines if the processor has an UART.
Uart_Port String PORTB If the processor has an UART, defines on which port.
Uart_RxBit Integer 5 If the processor has an UART, defines Rx on witch pin.
Uart_TxBit Integer 7 If the processor has an UART, defines Tx on witch pin.
OscCal String For processors that have a oscillator calibration feature;

possible values are movlw or retlw; defines witch type of
instruction returns the calibration value in the W register at
reset. If retlw, a call to the last program code location is
inserted at start-up; if movlw, it is assumed that there is a PC
wrap to 0 after last program location execution.

Enhanced Boolean 0 Identifies the processor as a PIC16 enhanced mid-range
processor

Tip:
NoReturn=1 and NoAddlw=1 together force PMP to use the PIC10/PIC12 code generator; this is
used for some very reduced instruction set PIC16 processors.

Document revision: A O P E R A T I O N - C O N F I G U R A T I O N F I L E Page 22/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3 Language features

3.1 BNF representation in this document
This document uses a simplified BNF style representation that came from TpLex styles:

 Characters in bold face are literal characters.

 Items between parentheses are optional.

 The vertical bar | denotes an option (synonym of "or").

 A star after an item denotes the possible repetition of this item.

 A ::= is a synonym of "is".

Examples:

<Literal Comment> ::= (* This is a comment *) This is a comment that is fully literal.

<Another Comment> ::= (* <Your Comment> *) This is a comment that is described by a
reference to another item that should be
described further.

<Optional Comment> ::= ((* Comment *)) This is a literal comment that is optional.

<Uses declaration> ::= (USES <Identifier>(, <Identifier>)*; This is a unit USES declaration that is optional
and may contain several unit references,
separated by a comma and terminated by a
semicolon.

<Source File header> ::= PROGRAM|UNIT <Identifier>; This is a source file header that can be either a
PROGRAM main source file or an UNIT source
file.

3.2 Keywords
The following keywords are implemented and / or reserved by the PMP language (bold faced if not in
standard TP/Delphi Pascal):
ABS(4), ABSOLUTE, AND, ARCCOS(5), ARCSIN(5), ARCTAN(5), ARRAY, ASM, ASSIGN, BAUD, BEGIN, BITS, BOOLEAN, BREAK, BYTE,
CASE, CHAR, CLR, CLRWDT, CODESEG(3), CONFIG, CONST, CONTINUE, COS(5), DEC, DECLARED, DEFINED, DELAY,
DELAY_MS, DELAY_NS, DISPOSE(5)(6), DIV, DO, DOUBLE(5), DOWNTO, DWORD, EEREAD, EEWRITE, ELSE, END, ERROR,
EXCLUDE, EXIT, EXP(5), EXTERNAL, FOR, FORWARD, FP_CLR(5), FP_IOP(5), FP_OVR(5), FP_UND(5), FREEMEM(5)(6), FREQUENCY,
FUNCTION, GETMEM(5)(6), GOTO, HEX, HI, HIGH, IDLOC, IF, IMPLEMENTATION, IN, INC, INCLUDE, INITIALIZATION, INLINE(1),
INPUT, INTEGER, INTERFACE, INTERRUPT, LENGTH, LIBRARY(1), LN(5), LO, LONGINT, LONGWORD, LOW, MAXINT,
MAXLONGINT, MAXWORD, MEMAVAIL(5)(6), MOD, MOD16, MOD16S, MOD32, MOD8, MOVE, MUL18(2), NEW(5)(6), NIL, NOP, NOT,
ODD, OF, ON, OPTION, OR, ORD, OUT, OUTPUT, OVERLOAD(3), PACKED(1), PI(5), POINTER, POW(5), PRED, PROCEDURE,
PROGRAM, PWM, READ, READLN, REAL(5), RECORD, REPEAT, RESET, ROL, ROR, ROUND(5), SET, SFR, SHL, SHORTINT, SHR,
SIN, SINGLE(5), SIZEOF, SLEEP, SQR(4), SQRT(5), STR, STRING, SUCC, SWAP, TAN(5), THEN, TO, TRIS, TRUNC(5), TYPE, UNIT,
UNTIL, UPCASE, USES, VAL, VAR, VERSION, VOLATILE, WHILE, WITH, WORD, WRITE, WRITELN, XOR.

(1): For future compatibility of source codes, some keywords that are used in other Pascal implementations such as TP or Delphi are
already reserved even if not implemented. Even if not reserved by PMP, it should be avoided to use such keywords as identifiers.

(2): Not implemented for all processors.
(3): Same as (1) but the implementation is already scheduled in a future version.
(4): Limited to integer types for processors other than PIC16 and PIC18.
(5): Only for PIC16 and PIC18 processors.
(6): Not for PIC16 non-enhanced processors.

Document revision: A L A N G U A G E F E A T U R E S - K E Y W O R D S Page 23/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.3 Constant formats
PMP supports standard Pascal constant formats as well as additional ones that programmers like (sorry but
octal is not supported):

$<hex> hexadecimal constant (8..32 bits) (TP/Delphi format)

0x<hex> hexadecimal constant (8..32 bits) (C format)

h'<hex>' hexadecimal constant (8..32 bits) (MPAsm™ format)

0b<binary> binary constant (8..32 bits) (C format)

b'<binary>' binary constant (8..32 bits) (MPAsm™ format)

'<character>' single character constant (ASCII), evaluated as CHAR.

#n single character constant (ASCII), given for compatibility only since PMP type checking is
limited, #n is equivalent to n, but evaluated as CHAR.

#$<hex> single character constant (ASCII), given for compatibility only since PMP type checking is
limited, #$<hex> is equivalent to $<hex>, but evaluated as CHAR.

'<string>' string constant (*)

(*): Character literals (TP / Delphi ^n form, or C \n form) are not allowed; for concatenation use the + operator
construction with a literal numeric.

Note that PMP is poorly typed on variables and constants (except for strings, records and arrays).

There is a special syntax behavior for b'<binary>' and h'<hex>': spaces, dots, dashes and underscores are
accepted inside the quoted string for improving readability; they are ignored.

Document revision: A L A N G U A G E F E A T U R E S - C O N S T A N T F O R M A T S Page 24/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.4 Program structure
A typical PMP program contains the following elements:

Program <program_name>;

<Hardware declarations>
(<USES declaration>)
(
(<Constant declaration>)* |
(<TYPE declaration>)* |
(<Variable declaration>)* |
(<Procedure or function declaration>)*
)*

Begin
(<Statement>)*

End.

PMP syntax is as close as possible to the TP / Delphi syntax.

All programs must begin with the PROGRAM keyword, followed by the name of the program.

<Program name> must match the file name and cannot be expressed as a string, so long file names are
allowed but they must contain only valid identifier characters.

The program body must contain some declaration about the target processor, contained in the hardware
declaration section.

PMP is a single pass compiler; as required by standard Pascal, all identifiers that are to be used in the
remainder of the code must be declared in a declaration section of the program or in a procedure or function
prior to their use.

The program may contain some optional special procedures qualified with the INTERRUPT modifier (see §
3.15), which is used to define sets of statements that is intended to serve as an interrupt service routine.

Document revision: A L A N G U A G E F E A T U R E S - P R O G R A M S T R U C T U R E Page 25/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.5 Unit structure
A typical PMP unit contains the following elements:

Unit <Unit_name>;

Interface
(<USES declaration>)

(
(<Constant declaration>)* |
(<Type declaration>)* |
(<Variable declaration>)* |
(<Procedures and functions declaration>)*
)*

Implementation

((<Constant declaration>)* | (<Type declaration>)*| (<Variable declaration>)* | (Procedures
and functions declaration)*)*

(Initialization
(<Statement>)*

)
End.
<Unit name> must match the file name and cannot be expressed as a string, so long file names are allowed
but they must contain only valid identifier characters.

Symbols, procedures and functions that are declared in the interface section will be visible outside the unit
(declared as "global" for the linker).

Procedure and function arguments declarations in the implementation section must match the declarations of
the interface section, or may be omitted (as in TP / Delphi).

PMP does not support "USES" declaration in the implementation section, so take care about circular
references between units.

PMP supports "initialization" section in units. Initializations are called before execution of the main program
statements.

A unit cannot have a processor definition, since it should be build for a main program. So if a unit is compiled
directly, PMP uses the default selected options in the Project Options form. This allows a compilation for
syntax checking.

When a unit is compiled during a project "make" or "build", the unit uses the main program processor
definition.

A unit generates its own .asm file and a .sym file; .sym file format is specific to PMP, it lists all exported and
imported functions, procedures and variables. PMP takes care about unit .pas and .asm file time stamp
match, and will rebuild units that are out of date.

Since some optimizations are processor dependant, if the processor declaration or frequency declaration of a
previous compilation of a unit does not match the main program declaration, PMP automatically rebuild the
unit with the main program processor and frequency declarations.

The unit may contain some optional special procedures qualified with the INTERRUPT modifier (see § 3.15),
which is used to define sets of statements that is intended to serve as an interrupt service routine.

Document revision: A L A N G U A G E F E A T U R E S - U N I T S T R U C T U R E Page 26/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.6 Comments
PMP programs may contain comments in several syntaxes:

Standard Pascal syntax:

{ (<Comment>) } | (* (<comment>) *)

Delphi syntax (all characters until end of line is a comment):

// (<Comment>)

They may appear on a line by themselves, or combined with program statements.

3.7 Directives
➢ Directives cannot be inserted in expressions or assignments; they must be outside of statements.

Directives are special comments that change compiler code generation. The syntax is standard Pascal
syntax:

<Directive> ::= {$ <Directive Item> (<Any comment>) } | (*$ <Directive Item> (<Any comment >) *)

A space may be inserted after the $ sign (not standard Pascal). Spaces are not significant in directive items.

In below descriptions, some directives or arguments has synonyms, they are separated by a |.

+|- toggles may be replaced by (are aliases of) ON|OFF toggles for directives that apply.

<Any comment> is to specify that any text after the directive parameters (if any) is considered as comment.

3.7.1 $C | $CODEGEN - PLC mode code
1+ | 1- or PLC | NORMAL

Toggles special PLC mode bit operations generation (default is off or NORMAL); bit operations and
statements are limited, see chapter 4.1.5.

3.7.2 $CONFIG - Configuration bits
<ConfigItem>(, <ConfigItem>)*|NONE

NONE keyword – used alone – tells the compiler to not generate the CONFIG directive for the
assembler. This is useful when using a bootloader that supersedes automatically all options.

The $CONFIG NONE directive may coexist with other $CONFIG directives, but simply they will not be
generated.

This is the new syntax for configuration bits that matches the assembler config directive multi-byte
complexity (see § 3.8 for the old alternate CONFIG syntax).
This directive is not allowed in units.
This directive may be used several times, but cannot be used after code generation has started.
<ConfigItem> ::= <ConfigName> = <Value>
Where <ConfigName> is a legal configuration bit known by MPASM include file. The different possible
names and values may be found in the Project Option's dialog.
Where <Value> is a legal configuration bit / group of bits known by MPASM include file. Identifiers
starting with a letter may be used as is; names starting with a digit should be quoted to be read as a
string. Nevertheless, any identifier may be quoted.
For processors smaller than PIC18, this directive also accepts definition of configuration bits, with an
equivalent <ConfigName> equal to the left part of the name (without leading underscore character) and
<Value> equal to right part of the name (see example below).

Example:
{$CONFIG CPUDIV = OSC1_PLL2, FOSC = XT_XT, BORV = '1_9'}
{$CONFIG CPD=OFF, BOR=NSLEEP}
// This last one is equivalent to the old format:
CONST CONFIG = _CPD_OFF and _BOR_NSLEEP;

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 27/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.3 $DEPRECATED – Define a unit, procedure or function as obsolete
<Message>

Define the current unit, procedure or function as obsolete. If it is used, the compiler will output a warning
with the given <Message> (quoted string).

Example:
{$DEPRECATED 'This procedure is kept for compatibility, use XYZ instead' }

3.7.4 $EEPROM - Define useable EEPROM area
<Address expression> [TO <Address expression>]

Defines EEPROM memory area to use for variables that will be allocated after this point (default is all
available EEPROM). The first parameter defines only the EEPROM start area, the optional second
parameter defines EEPROM top too (last usable address). This directive is local to the current module.

Example:
{$EEPROM $10 TO $FF } // $0 to $0F reserved for direct use

3.7.5 $EOL – Define end of line behavior
CR | CRLF

Defines behavior for end of line in WRITELN. CR puts only a CR ($0D), and CRLF (default) puts a CR
and LF pair ($0D-$0A). If this directive is present before a USES statement, it propagates to the used
units. For READLN, CR only matters and LF characters are ignored.

Example:
{$EOL CR }

3.7.6 $EXTENDED – Enable / disable extended Pascal syntax - NEW! (V1.6.0)
ON | OFF

Tell the compiler to enable or disable some non-standard Pascal syntax. Default is ON.
If the extended syntax is enabled PMP implements some nice features taken from other Pascal-like
languages such as MODULA or OBERON. These extended syntax are:

✔ A BY clause in the FOR loop statement,
✔ A LOOP... END statement,
✔ A RETURN statement in functions.
✔ An ELSEIF statement for the IF statement.

Example:
{$EXTENDED OFF } // Standard Pascal

3.7.7 $FREQUENCY - Processor frequency
<frequency>

Defines processor operating frequency; this directive overrides the default frequency defined in the
Project Options form. For the command line version of PMP, it may be defined on command line
arguments (or defaults to 4 MHz). This directive is not allowed in units since they use main program
declaration. A frequency multiplier can be used (4000 KHz, 8 MHz …), but dots are not allowed (4.5 MHz
is forbidden, use 4500 KHz instead). Case is not sensitive (since mHz should not be 1/1000 th of Hertz!). A
CONST pseudo variable named FREQUENCY is generated that holds the value and may be used in
expressions.

Example:
{$IFDEF LOW_POWER}
 {$FREQUENCY 31000}
{$ELSE}
 {$FREQUENCY 20 MHz}
{$ENDIF}

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 28/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.8 $IDLOC Define user ID bytes
[BYTE] <IdLocString> | <IdLocItem>(, <IdLocItem>)*

New syntax for setting IDLOC bits.
This directive is not allowed in units.
This directive may be used several times, but cannot be used after code generation has started.
The optional BYTE tag forces the compiler to generate a byte for each item, for processors where ID
locations may be byte wide.

<IdLocString> may be a single quoted string, limited in size to the max number of IDLOC of the
processor (typically 4); this syntax is maintained for compatibility with MPASM old syntax format.
Special behavior: if the ID locations limits for the current processor is 0..15, than each digit is interpreted
as hexadecimal digits and translated as 0..9, A..F (0..15).

<IdLocItem> ::= <IdLocIndex>: <IdLocValue>

<IdLocIndex> is an IDLOC integer expression that returns an index in the 0..n range, where n depends to
the current processor configuration.

<IdLocValue> is an IDLOC integer expression that returns a value compatible with the IDLOC format of
the current processor configuration.

 Depending to the processor IDLOC values may be read and / or written by code (see IDLOC pseudo
variable).

 If not defined, an IDLOC item is set to it's maximum value.
 If enabled, the project's version values always override the values defined by this directive.

Example:
CONST MY_IDLOC_3 = $0A;
{$IDLOC 0:1, 1:$FF, 2:$AA, 3:MY_IDLOC_3 }

3.7.9 $I | $INCLUDE - Include source file
<FileName>

Include another file in place. <FileName> may be a simple file of the form Name.Ext or a string constant
between quotes (mandatory if the file name contains a path and/or spaces). If the file name does not
contain an extension, .pas is assumed. See global include path declaration in chapter 2.1.

Example:
{$INCLUDE TEST1 } // include TEST1.PAS
{$INCLUDE TEST2.INC }
{$INCLUDE 'This is a long file name.pas' }

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 29/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.10 $INIT | $INITIALIZE - Define start-up initializations
<Item>[(, <Item>)*]

Initialize some processor features at start-up (reset). <Item> may be one of the following:
ALL:

Include all possible initializations (see below).
PORTS [INPUT|OUTPUT]:

If INPUT is specified or by default, set all LATx or PORTx registers to zero then initialize all
TRISx registers to $FF (all inputs); otherwise, set all LATx or PORTx registers to zero then
initialize all TRISx registers to $00 (all outputs)

ANALOGS:
Initialize all analog registers to zero so that the processor is ready to do digital I/O on all pins.
Depending on the processor this includes: ANSEL, ANSELH, ADCON1 (or sets ADCON1 or
ANCON0/ANCON1 to all digital inputs for PIC18). Depending on the processor, digital I/O may
need to initialize COMPARATORS too, see below.

RAM:
Initialize all used ram variables (explicit variables only) to zero. By default PMP does not initialize
memory. Note that if used all the HEAP memory pointers / structures are always reset during
start-up.

INTERRUPTS:
Initialize all interrupt registers to zero. Depending on the processor this includes INTCON,
INTCON2, INTCON3, PIE1, PIE2, PIR1 and PIR2.

COMPARATORS: NEW! (V1.5.4):
Initialize all comparators enabling registers to set all I/O as digital. Depending on the processor,
actually it includes only CMCON.

This directive cannot be used inside the main program block since initialization call is done just before.
This directive cannot be used in units.
This directive supersedes a previous one (the last one sets initialization flags, any previous one is
discarded).

Example:
{$INIT RAM, ANALOGS }

3.7.11 $INTERRUPTS – Enable / disable / define interrupts
ON | OFF

Tell the compiler that we don't need interrupts so that interrupt entry points are not generated. This
directive cannot be found after an interrupt procedure had been defined, or after the begin of the main
program block. Default is ON.

Example:
{$INTERRUPTS ON }

UNIQUE | MULTIPLE
Tell the compiler that we need only one interrupt procedure (UNIQUE) or more than one (MULTIPLE), so
that interrupt entry points are optimized (see interrupt procedure format). This directive cannot be found
after an interrupt procedure had been defined, or after the begin of the main program block. Default is
MULTIPLE. This has nothing to do with PIC18 low/high interrupts and priorities (we may have an unique
interrupt or multiple ones per priority).

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 30/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.12 $JUMPS – Define jumps range
SHORT | LONG (processor PIC18 only)

By default, PMP generates BRA instructions for jumps within a block to minimize code size; this is
enough for most programs but in some circumstances the range of a BRA instruction may be not
enough. SHORT generates BRA after this point, LONG generates GOTO instructions after this point,
until another $JUMPS directive.

Example:
{$JUMPS LONG }

3.7.13 $O | $OPTIM | $OPTIMIZE - Define optimization mode
S | SPEED

Optimize for speed; some internal function calls are replaced by inline code (call instructions to these
functions are suppressed: less use of processor hardware stack) and code optimization is more
accurate. It invalidates the memory optimization (see below).

M | MEMORY
Optimize for memory size and calls (default); internal functions are mostly implemented as subroutines;
processor hardware stack is used for calls. It invalidates the speed optimization (see above).

+ | -
Globally activate or deactivate the optimizer. Defaults to the Project options setting.

Example:
{$OPTIMIZE SPEED}

3.7.14 $OPTIMIZE_PARAMS - Define parameter passing optimization mode
ON | OFF

By default parameters passing may be optimized (passed in registers). In some cases it may be
necessary to turn off this optimization, for pure assembler routines or procedures assigned to output
channel. Defaults to ON.

Example:
{$OPTIMIZE_PARAMS OFF}

3.7.15 $OSCCAL – Activates or deactivates OSCCAL processor feature
ON | OFF

For processors that have an Oscillator Calibration feature, tells to the compiler to generate code at reset
to get calibration value in W register and to set-up OSCCAL register. Cannot be used after startup code
generation (in program main block). Defaults to OFF.

Example:
{$OSCCAL ON}

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 31/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.16 $P | $POINTERS - Define pointers size

➢ For PIC18 and PIC16 Enhanced processors the LARGE model is forced and cannot be
changed.

S | SMALL
Optimize for using one byte for pointers and VAR arguments (this is default); this limits allocation of
pointed to variables in the lowest 256 bytes of memory. PMP does not search to optimize space for such
variables. This directive cannot be used after code has been generated. This directive is only available in
a program (project wide directive); units will be automatically compiled with the same option as the main
program.
This directive is ignored for PIC18 and PIC16 enhanced processors, for witch pointers and VAR
argument addresses are always 16 bits wide (LARGE). A warning will be issued and the $POINTERS
LARGE will remain active.

L | LARGE
Optimize for using two bytes pointers and VAR arguments; this permits allocation of such variables in the
whole memory, but code is less efficient since parameter passing consumes more memory and code,
and using of FSR must be coupled with the use of IRP flag. PMP does not search to optimize space for
such variables. This directive is ignored for small devices that have not more than 256 bytes of memory.
This directive cannot be used after code has been generated. This directive is only available in a
program (project wide directive); units will be automatically compiled with the same option than the main
program.
This directive is not allowed for PIC18 and PIC16 enhanced processors, for witch pointers and VAR
argument addresses are always 16 bits wide.
This directive is ignored for processors that have no upper ram (all ram is within 0,,255 address range). A
warning will be issued and the $POINTERS SMALL will remain active.

Example:
{$POINTERS LARGE}

3.7.17 $POP – Restore compiler options
This directive restores the previously saved options (see details in $PUSH, below).

3.7.18 $PROCESSOR - Define processor
<processor>

Defines the processor part number; this directive overrides the default processor part number defined in
the Project Options form. For the command line version of PMP, it must be used if the processor is not
defined in command line arguments. This directive is not allowed in units since they use the main
program declaration. In main programs this directive should be the first to be declared. The processor
part number is an identifier and must match the MPAsm™ processor and linker script include file names1,
which give the standard register definitions and the memory mapping of the processor. Imported identifier
definitions are visible to the program (such as standard registers and bit definitions), and cannot be
redefined.

➢ Tip: The given <processor> is automatically defined as a conditional compilation symbol.

Example:
{$PROCESSOR PIC16F690}
…
{$IFDEF 'PIC16F*' }
{$DEFINE MIDRANGE}
{$ENDIF}

1 For mysterious considerations .inc and .lkr file names are different in the MPLAB® suite; PMP translates
automatically the file names: PIC16F84 is translated to P16F84 for .inc file and translated to 16F84 for .lkr file. This
is not very portable…

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 32/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.19 $PUSH – Save compiler options
This directive saves the current compiler options so that some of them may be modified locally, then
restored with a $POP directive.
Several $PUSH may be nested (options are saved in a stack).
The saved options are: $WARNING (global and individual), $CODEGEN, $CONFIG (ON/OFF),
$INITIALIZE, $INTERRUPTS, $JUMPS, $OPTIMIZE, $OSCCAL, $POINTERS and $SPACE.

3.7.20 $RESERVED RAM | EEPROM - Specify a memory region as unusable
<Address expression> [TO <Address expression>]

Defines a RAM or EEPROM address or consecutive addresses that are not usable by PMP. This
directive may be used several times to define more than one area, or different areas may be defined in
one directive, separated by a comma. If an address is already used by PMP or does not exist, an error
occurs. Warning: in the current implementation, this directive is local to the current unit, and it is global if
defined in the main program, before the “uses” section.

Examples:
{$RESERVED RAM $100, $110 TO $11F comment: reserved for XYZ module }
{$RESERVED EEPROM $10, $11, $F0 TO $FF}
CONST
 MOD2_RAM_START = $200;
 MOD2_RAM_LENGTH = $10;
{$RESERVED RAM MOD2_RAM_START TO MOD2_RAM_START + MOD2_RAM_LENGTH - 1 }

3.7.21 $SCRIPT – Define the linker script to use
<String expression>

Define (override) the linker script file to use. <String expression> is the file name to use, without
character wild-cards. It may contain a full path. If there is no extension .lkr is assumed.
This directive had been added to make it possible to use special case scripts (user modified linker
scripts), for using a boot loader for example.
This directive must be used BEFORE any other processor characteristics-related directive except
$PROCESSOR.
This directive overrides the script that may be defined in the project's options.
Example:
{$IFDEF BOOT_LOADER}
{$SCRIPT 'P18_BOOT_g.LKR'}
{$ENDIF}

3.7.22 $S | $SPACE - Switch memory allocation to RAM or EEPROM
RAM

Defines that variables are generated in RAM area (default). This directive is effective until another
SPACE directive.

EEPROM
Defines that variables are generated in EEPROM area. This directive is effective until another SPACE
directive or function or procedure declaration.

Example:
{$SPACE EEPROM}
VAR
 EE_SAVED_INDEX: BYTE; // Index saved in EEPROM
{$SPACE RAM}

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 33/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.23 $STRINGS - Set default string size
<expression>

Defines the default size of strings when there is no size qualifier. This new size will be used after this line
of code. This directive is local.

Example:
{$STRINGS 32} // Set default string size to 32 characters

3.7.24 $UERROR - Generate a compiler error
<Message>

Raise a user error message with the given text. <Message> must be enclosed by standard character
string quotes. The error will count in the total compiler error count so that linker will not be called.
Example:
{$IFDEF ’PIC18*’}
{$UERROR ’Sorry this module cannot be used with a PIC18 processor’}
{$ENDIF}

3.7.25 $UWARNING - Generate a compiler warning
<Message>

Display a user warning message with the given text. <Message> must be enclosed by standard
character string quotes.
Example:
{$IF FREQUENCY < 4000000}
{$UWARNING ’Inaccurate timings will occur at this frequency’}
{$IFEND}

3.7.26 $V $VARIABLES Define the memory region for RAM variables
<Address expression> [TO <Address expression>]

Defines RAM memory area to use for variables that will be allocated after this point (default is all
available RAM). The first parameter defines only the RAM start address, the optional second parameter
defines RAM top too (last usable address). Check is made regarding to the processor configuration. This
directive is local to the current module.

Example:
{$VARIABLES $20 TO $6F}

3.7.27 $VECTORS - Define reset and interrupt vectors

➢ This directive replaces the $RESET directive that was too restricted and have been removed.

PIC18: [RESET=<Address>][,INT_LOW=<Address>][,INT_HIGH=<Address>]
Others: [RESET=<Address>][,INT=<Address>]

Defines the RESET and/or the interrupt vectors to the given <Address> expression. This is where PMP
places a jump to the appropriate code. All items are optional, if not given the default address is used.
The programmer is allowed to change the vectors so that he is able to install he’s own start-up code (a
boot-loader or any) that installs itself at $0000. This directive cannot be used if some code has been
already generated. This directive is only available in a program (project wide directive).

Example:
{$IFDEF BOOTLOADER}
 {$VECTORS RESET=$800, INT=$804}
{$ENDIF}

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 34/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.28 $W | $WARN | $WARNING - Define a compiler warnings behavior
n (+ | -)

Validate or invalidate the compiler warning number n after this point.

+ | -
Validate or invalidate all the compiler warnings after this point of source code. This does not reset
individual warning off (as defined above).

Example:
{$W 10-}

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 35/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.7.29 Conditional compilation
PMP allows conditional compilation by means of conditional directives.

Conditional directives are special comments that change the compiler code generation. The syntax is a
standard TP / Delphi syntax:

<Conditional directive> ::= {$ <Conditional Directive Item> } | (*$ < Conditional Directive Item > *)

Where:

<Conditional Directive Item> ::= <Conditional Define Item>|<Conditional Expression Item>

<Conditional Define Item> ::= DEFINE <Conditional Identifier> | UNDEF <Conditional Identifier> | IFDEF
<Conditional Identifier> | IFNDEF <Conditional Identifier> | IFOPT <Directive Item> | ELSE | ENDIF

<Conditional Expression Item> ::= IF <Constant Conditional Expression> | ELSEIF <Constant Conditional
Expression> | ELSE | IFEND

<Constant Conditional Expression> is a standard <Constant Integer Expression> with additional built-in
function capabilities: Defined(<Conditional Identifier>) and Declared(<Identifier>), see below.

<Constant Conditional Expression> is finally evaluated as a boolean (anything not zero is true).

<Conditional Identifier> is not a Pascal identifier and cannot be referenced in real program code. Likewise,
Pascal identifiers cannot be referenced as <Conditional Identifier>.

A <Conditional Identifier> works like boolean variables: it is true (defined) or false (not defined). Any valid
conditional identifier is assumed to be false until it is defined. The $DEFINE affects the true value to the
specified <Conditional Identifier> and the $UNDEF affects it the false value.

<Directive Item> is any switch option directive (CODEGEN, OPTIMIZE, SPACE, POINTERS, WARNING) as
defined in the previous chapter.

$DEFINE <Conditional Identifier>
Defines a conditional identifier.

$UNDEF <Conditional Identifier>
Un-defines a conditional identifier.

$IFDEF <Conditional Identifier> | $IFDEF '<Conditional Identifier String>'
If the given conditional identifier is defined, the next code compiles until a $ELSE, $ENDIF or $IFEND
conditional directive. The second form accepts ‘?’ and ‘*’ wildcards in the string to match more than one
symbol.

$IFNDEF <Conditional Identifier> | $IFNDEF '<Conditional Identifier String>'
If the given conditional identifier is not defined, the next code compiles until a $ELSE, $ENDIF or
$IFEND conditional directive. The second form accepts ‘?’ and ‘*’ wildcards in the string to match more
than one symbol.

$ELSE
If all the previous $IF, $ELSEIF, $IFDEF or $IFNDEF conditional directives had been evaluated to False,
the next code compiles until a $ENDIF or $IFEND conditional directive.

$ENDIF
Terminates a $IFDEF, $IFNDEF or $IF conditional directive block (synonym to $IFEND).

$IF <Conditional Expression>
If the given expression evaluates to TRUE (anything not zero is true), the next code compiles until a
$ELSE, $ENDIF or $IFEND conditional directive. <Conditional Expression> may contain calls to
additional built-in functions: Defined (<Conditional Identifier>) and Declared (<Identifier>), see below.

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 36/101

PIC MICRO PASCAL V1.6 - USER MANUAL

$ELSEIF <Conditional Expression>
If all the previous $IF, $ELSEIF, $IFDEF or $IFNDEF conditional directives had been evaluated to
FALSE, and if the given expression evaluates to TRUE (anything not zero is true), the next code
compiles until a $ELSE, $ENDIF or $IFEND conditional directive. <Conditional Expression> may contain
calls to additional built-in functions: Defined (<Conditional Identifier>) and Declared (<Identifier>), see
below.

$IFEND
Terminates a $IF, $IFDEF or $IFNDEF conditional directive block (synonym to $IF).

$IFOPT <Directive Item>
If the given directive item is in the given state, the next code compiles until a $ELSE or $ENDIF
conditional directive.

Example:
{$IFOPT SPACE RAM}
 …
{$ENDIF}
{$IFOPT WARNING 2-}
 …
{$ENDIF}

Defined(<Conditional Identifier>) | Defined('<Conditional Identifier String>')
Special built-in function that can be used in conditional expressions ($IF and $ELSEIF directives) and in
any expression in normal code. It returns TRUE if <Conditional Identifier> is known as a defined symbol
at this point (formerly equivalent to the IFDEF directive). The second form accepts ‘?’ and ‘*’ wild card
characters in the string to match more than one symbol.

Example:
{$IF DEFINED(BOOT) and DEFINED('PIC16*')}
 …
{$ENDIF}

Declared(<Identifier>)
Special built-in function that can be used in conditional expressions and in any expression in normal
code. It returns TRUE if <Identifier> is a Pascal identifier (constant, type, variable, function or procedure
name) that has been declared at this point.

Example:
{$IF DECLARED(PORTA) or DECLARED(TMR0H)}
 …
{$ENDIF}

Remember that:

 Conditional compilation directives are not accepted inside expressions (as any directive).

 Conditional compilation identifiers are local to units; they are global if Defined in the project's options
or Defined in the main program before the USES keyword.

 If re-Defined in units, they become local to the unit after the point of code where they are re-Defined
(they don't propagate to the main program).

 If Defined in project options, they cannot be redefined in code.

Document revision: A L A N G U A G E F E A T U R E S - D I R E C T I V E S Page 37/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.8 Configuration bits declaration as CONST
➢ This syntax is maintained for compatibility, since V1.2+ there is the new $CONFIG directive that is more

universal (see § 3.7.2).

This syntax is not compatible with processors with a multi-word configuration.

The basic CONFIG declaration in PMP is defined as a CONST section pseudo variable definition. This
pseudo variable cannot be used as identifier and is not defined in the program.

CONST
 CONFIG = <Numeric Expression>;

This variable maps directly to the __CONFIG directive of MPAsm™ assembler; declaration accepts any
constant expression that returns a 16 bits value, witch is generated as a single value for the assembler.

Example:

 CONFIG = _INTRC_OSC_NOCLKOUT AND _WDT_OFF AND _PWRTE_OFF AND _MCLRE_OFF
 AND _CP_OFF AND _BOR_OFF AND _IESO_OFF AND _FCMEN_OFF;

Will generate this code in the .asm file:

 __CONFIG h'30D4'

3.9 Identifiers
PMP identifiers may start with a single underscore character (access to some special declarations in
MPAsm™ syntax, such as CONFIG constants), but identifiers starting with two underscores are illegal
(reserved for PMP internal use).

PMP identifiers may contain unaccented letters, numeric characters and the underscore character: [‘A’..’Z’,
‘a’..’z’, '0'..'9', ‘_’]. The underscore is always significant.

As in standard Pascal language, PMP identifiers (and any keyword) are not case sensitive.

PMP identifiers are not limited in length, but should be compatible with the assembler that is used (MPAsm™

or other).

Identifiers may also generate internal larger composite identifiers for which the total length may exceed the
limits of the assembler (32 characters for MPASM). PMP will use a special squeezing technique to fit within
the assembler limit of 32 characters, while trying to maintain enough visual information for debugging.

Examples:

The following identifiers are legal:
 _MyVar, TheVar, Var4, The_var

But these ones are illegal:
 _, __MyVar, 4TheVar, Var4$, The_var%

Document revision: A L A N G U A G E F E A T U R E S - I D E N T I F I E R S Page 38/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.10 Constant declaration
PMP supports the declaration of symbols of type constant that may be simple values, strings or arrays.

Constants must be declared in a CONST section.

The syntax of a constant declaration is:

<Constant> = <Constant expression>;

Or:

<Constant>: <Simple type> = <Constant Expression>;

Or

<Constant>: <Type Identifier> = < Constant Expression>;

Or:

<Constant>: ARRAY[<Range Expression>..<Range Expression>] OF <Simple Type> = (<Constant
Expression>(, <Constant Expression>)*);

Where:

<Constant> is a valid identifier name.

<Constant Expression> is a valid numeric, character or string expression that may be computed at this point.

<Range Expression> is a valid numeric constant that may be computed at this time.

<Simple Type> may be BOOLEAN, BYTE, SHORTINT, WORD, LONGWORD (DWORD) or LONGINT and
also SINGLE or REAL for PIC16+.

➢ Simple-typed constants syntax is for convenience only, it forces a range checking; such a variable
declaration does not generate initialization code or variable allocation as in TP or Delphi (these
strange “variable constants”).

<Type Identifier> is an identifier of a previously defined TYPE. The resulting type should be <Simple Type> or
an ARRAY type. String types are not allowed, only direct string literals may be used.

<Value Expression> is a valid numeric constant expression that may be computed at this time. If the value
does not match <simple type>, a truncation occurs and a warning is produced.

Expressions may be any valid expression that may be evaluated by the compiler at this point (PMP uses 32
bits arithmetic for computing integer constant expressions, and 64 bits doubles for computing floating point
expressions):

CONST
 ConstOne = (123 + 4) * $10;
 ConstTwo = ConstOne - 1;
 ConstThree = 'hello ' + 'world'; // string made by concatenation
 ConstThreeCrLf = ConstThree + 13 + 10; // string with CR/LF
 ConstFour = 4;
 ConstFive = PI * 1.234E-3; // defaults to REAL type
 ConstSix: single = PI / 4.0; { force SINGLE precision, but computed as
 REAL (due to the expression that starts
 with PI that is REAL) }
 MyConstArray: ARRAY[1..ConstFour] OF INTEGER = (1, 1 SHL 1, 4, 2 * 4);
 MyFloatArray: ARRAY[1..ConstFour] OF REAL = (1.0, 1 SHL 1, 4.0, 2 * 4);
TYPE
 tMyConstArray = ARRAY[1..4] OF INTEGER;
CONST
 MyConstArray2: tMyConstArray = (10, 20, 30, 40);

PMP is a single pass compiler. Constants are declared prior to their use.

Document revision: A L A N G U A G E F E A T U R E S - C O N S T A N T D E C L A R A T I O N Page 39/101

PIC MICRO PASCAL V1.6 - USER MANUAL

Assembler equivalence of constants:

Internally, all constants are prefixed by the module name (program or unit) as:

<Program or unit name>.<Constant name>.

Constants declared in a procedure or function declaration are internally prefixed with the procedure or
function name too, as:

<Program or unit name>.<Procedure or function name>.<Constant name> and they cannot be accessed
outside.

➢ Internal representation of symbols may be squeezed by a special algorithm to fit the 32 characters
limitation of MPASM.

3.10.1 Special constants behaviors
The only operator allowed between STRING constants is +. String construction with implicit concatenation is
not allowed (TP / Delphi syntax like 'hello'^M^J'world!'). Anything that is not a string is converted to a single
char (numeric 10 is converted to LF character).

Constant strings are implemented as ARRAY[0..SIZEOF(STRING)-1] OF BYTE. First byte at index 0 stores
the string length as for a variable string.

Except for strings or arrays, a symbol of type constant does not consume RAM space; they are only used by
the compiler.

Contrary to rules used by TP or Delphi, a typed constant is not modifiable at runtime (it is not in RAM).

Constant string and arrays are stored in program code space (use of a set of RETLW instructions for
PIC10..PIC16, and DATA directives for PIC18+). PMP tries to optimize constant strings or arrays if they are
short or indexed by a constant (can generate no code space at all).

Characters of a string may be accessed through an index like for an ARRAY:

CONST
 MyString = 'Hello ' + 'World!' + 13 + 10;
…
 A := MyString[TheIndex];

If a string is only referenced with a constant index (S[constant]) it will not generate a block of code for storing
the constant string.

A small enough string move (assignment) is implemented as individual byte moves.

If a constant string is used more than once it will generate only one block of code to store it.

Document revision: A L A N G U A G E F E A T U R E S - C O N S T A N T D E C L A R A T I O N Page 40/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.10.2 Pseudo SET , IN keyword
A special construction is implemented for bit masks, using the syntax of standard Pascal SET:

[BitA, BitB] defines a bit mask where the bit positions BitA and BitB are set.

Special behavior: If an element is a BOOLEAN variable, the bit number of this variable is used.

The standard IN keyword may be used to check a bit within any expression result as a pseudo SET.

Example:

VAR
 IO_Bit: boolean @PORTC.1;
 VarLong: longint;
 VarByte: byte;
CONST
 BitA = 2; BitB = 4;
 BitMask = [BitA, BitB, IO_Bit]; { Equivalent to [2, 4, 1]:
 constant b'00010110' }
…
 VarLong := BitMask;
 VarByte := BitB;
 IF 2 IN BitMask THEN // Evaluated as always True at compile time
 IF 4 IN [1, BitB..31] THEN // Evaluated as always True at compile time
 IF BitA IN VarLong THEN // True since bit 2 is set in VarLong
 IF VarByte IN VarLong THEN // True since VarByte=4 and

// bit 4 is set in VarLong
…

Since this special construction applies only to simple variables or expressions, it is limited to 32 bits values
and may be used in constant declarations or in any expression.

Standard PIC registers and bit values:

During MPAsm™ include file importation, PMP automatically defines all SFR registers as VOLATILE BYTE
variables and all bit definitions as constants (as C, IRP, TMR0IE …) so these identifiers have not to be
declared and so cannot be redefined by the user code.

Document revision: A L A N G U A G E F E A T U R E S - C O N S T A N T D E C L A R A T I O N Page 41/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.10.3 System constants and pseudo variables

PMP defines some system constants:

FALSE Returns 0.

TRUE Returns 1.

NIL Returns 0.

MAXINT Returns HIGH(integer) = 32767 ($7FFF).

MAXWORD Returns HIGH(word) = 65535 ($FFFF).

MAXLONGINT Returns HIGH(longint) = 2147483647 ($7FFFFFFF).

MAXLONGWORD Returns HIGH(longword) = 4294967295 ($FFFFFFFF).

PI This constant returns the value of PI, in the maximum FP precision in PMP (REAL
format) that gives a 32 bits mantissa plus the sign bit. This is a true constant, not a
computed value.

PMP defines some pseudo variables:

FREQUENCY This constant returns the current selected processor frequency in Hz.

VERSION This constant returns the PMP compiler version in a numerical form that may be
used in expressions. This is especially useful in $IF conditional defines to compile
for specific PMP versions (well, not very useful for now...).

If the version is Major.Minor.Revision, the returned value is:
Major * 100 + Minor * 10 + Revision.

Note: this is not similar to the standard TP or Delphi that defines a conditional
symbol like VERxxx.

IDLOC[<Constant Expression>] This array returns or sets the defined IDLOC value of index
<Constant Expression> that is evaluated as 0..x, depending on the processor. On
some processors this pseudo variable is writable. On small processors this pseudo
array is not readable: in this case PMP uses values defined at compile time,
otherwise the current IDLOC’s are read from the code flash memory.

MEMAVAIL This variable (read only) returns the currently available dynamic memory (heap), in
bytes. Dynamic memory is implemented for PIC18 and PIC16 enhanced only.

Division / modulo optimization:

One thing that is frustrating / not optimal in standard Pascal is the need to perform two divides to extract
the quotient and the remainder of an integer fraction (one DIV and one MOD). In PMP, the remainder of
the last divide operation may be available through a pseudo-variable if not optimized out. It is up to you
to store it somewhere before the next divide operation:

MOD8: BYTE This variable returns the last BYTE divide modulo. MOD8 also returns the LSB
of the last WORD, INTEGER or LONGINT / LONGWORD divide.

MOD16: WORD This variable returns the last WORD (unsigned 16 bits) divide modulo. MOD16
also returns the LSW of the last LONGINT / LONGWORD divide.

MOD16S: INTEGER This variable returns the last INTEGER (signed 16 bits) divide modulo.
MOD16S also returns the LSW of the last LONGINT / LONGWORD divide.

MOD32: LONGWORD This variable returns the last LONGWORD (unsigned 32 bits) divide modulo.

MOD32S: LONGINT This variable returns the last LONGINT (signed 32 bits) divide modulo.

➢ Note that MOD8, MOD16, MOD16S, MOD32 and MOD32S share the same memory locations.

➢ Note that system constants and pseudo constants cannot be redefined locally, these keywords are
reserved words.

Document revision: A L A N G U A G E F E A T U R E S - C O N S T A N T D E C L A R A T I O N Page 42/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.11 Type declaration
Types are limited in PMP; for the current implementation, the allowed type declarations are:

 Fixed length string.

 One dimension array of simple types.

 Simple record definition.

 Dynamic record definitionDynamic record definition..

 Pointer definition.

 Enumerated type.

 Range type.

<Type Declaration> ::=

TYPE

(<String Type Declaration> |

<One Dimension Array Type Declaration> |

<Record Type Declaration> |

<Dynamic record Type Declaration> |

<Pointer type definition> |

<Enumeration type definition> |

<Range type definition>)*

Where:

<String Type Declaration> ::= <Type Identifier> = STRING [<Numeric Constant>];

<One Dimension Array Type Declaration> ::= <Type Identifier> = ARRAY[<Array Dimension Range>] OF
<Simple Type>;

<Array dimension Range> ::= <Numeric Constant> .. <Numeric Constant> | <Range type definition>

<Record Type Declaration> ::= <Type Identifier> = RECORD <Simple field declaration>* END;

<Dynamic record Type Declaration> ::= <Type Identifier> = RECORD <Simple field declaration>* <Method
declaration>)* END;

<Pointer type definition> ::= <Type Identifier> = ^(<Simple type> | <Type Identifier>);

<Enumeration type definition> ::= <Type Identifier> = (<Identifier> (, <Identifier>)*);

<Range type definition> ::= <Type Identifier> = <Constant expression> .. <Constant expression>;

<Method declaration>) ::= <Procedure declaration> | <Function declaration>

Note: Since PMP has no type checking, ranges may contain mixed values. In the example below, the syntax
tMyRange3 = Monday..12; would be accepted.

Document revision: A L A N G U A G E F E A T U R E S - T Y P E D E C L A R A T I O N Page 43/101

PIC MICRO PASCAL V1.6 - USER MANUAL

Examples:

TYPE
 tMyString = STRING[10];
 tMyArray = ARRAY[1..10] OF BYTE;
 tMyRecord =
 RECORD
 X, Y: BYTE;
 B1, B2: BOOLEAN;
 END;
 tMyWordPtr = ^WORD;
 tMyRecordPtr = ^tMyRecord;
 tMyEnum = (Sunday, Monday, Tuesday, Thursday, Friday, Saturday);
 tMyRange1 = 12..24;
 tMyRange2 = Monday..Saturday;
 tMyArray2 = ARRAY[tMyRange] OF BYTE;

For an example of a dynamic record, see § 3.11.2.1

Document revision: A L A N G U A G E F E A T U R E S - T Y P E D E C L A R A T I O N Page 44/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.11.1 Pointer types
Pointer types may be defined forward as in standard Pascal:

TYPE
 pMyType = ^tMyType;
 tMyType = BYTE;

Restriction: the forward declared pointer must be found in the current TYPE block.

3.11.2 Records
Records must be declared in a TYPE section prior to be used.
Direct variable declaration as RECORD is not allowed.
A PMP record is a simple subset of a standard Pascal record; it cannot be nested and must contain only
simple type fields or strings or multi-bits fields (see below).
BOOLEAN fields in a record use only one bit as simple booleans, but they are grouped in one or several
consecutive bytes (the programmer must not use code that presumes of a record field position in memory).
Unused bits in bytes that are used for booleans are not reused by PMP for another variable, so it is safe to
move a record as a full block of bytes.

Record multi-bits fields :

Introduced in V1.3.13, to match SFR particular multi-bits fields (such as ADCON0.CHS), a new syntax has
been defined:

<Multi-bits Field Declaration> ::= <Type Identifier>: BITS [<Numeric Constant>];
Where:
<Number of bits> is an expression that returns a value in the 1..8 range.

Multi-bits fields may be accessed as any other record field. They are assumed to be unsigned.

A multi-bit field cannot cross a BYTE boundary. Also if a multi-bits field is followed by a simple type (as
BYTE, INTEGER or whatever), this one cannot cross a byte boundary too.

Memory representation: Individual bits and bit slices are allocated LSB first (from right to left).

A multi-bits declaration is only allowed within a RECORD declaration:
TYPE
 tMyRecordBits =
 RECORD
 X: BYTE; // bits 0..7 of first byte
 B1: BOOLEAN; // bit 0 of second byte (same as B1: BITS[1])
 BF1: BITS[3]; // bits 1..3 of 2nd byte
 BF2: BITS[4]; // bits 4..7 of 2nd byte
 END;

This is not allowed:

TYPE
 tMyRecordBits =
 RECORD
 X: BYTE; // bits 0..7 of first byte
 B1: BOOLEAN; // bit 0 of second byte (same as B1: BITS[1])
 Y: BYTE; // bits 0..7 of 3rd byte
 BF1: BITS[3]; // bits 1..3 of 2nd byte
 BF2: BITS[4]; // bits 4..7 of 2nd byte
 END;

Document revision: A L A N G U A G E F E A T U R E S - T Y P E D E C L A R A T I O N Page 45/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.11.2.1 Dynamic records
➢ Dynamic records are introduced in V1.4.9 as an alpha feature that needs to be tested and upgraded

further. It is implemented for all processors and do not need a $POINTERS LARGE directive.

What is called a “dynamic record” is a special construction of a standard record that accepts “methods”.

This is not Object Oriented programming but a midway between classic programming and OOP. It was fully
integrated in Delphi some years ago and I found that it may be seen as a new way to manipulate data
without all the stuff needed by OOP, so the footprint stays quite small in PIC programming.

Example of a dynamic record :

TYPE
 tMyDynRecord =
 RECORD
 X, Y: BYTE;
 B1, B2: BOOLEAN;

 procedure Init(iX, iY: BYTE);
 END;
…
procedure tMyDynRecord.Init(iX, iY: BYTE);
 begin
 X := iX;

Y := iY;
B1 := true;
B2 := true;

 end;

➢ A method declaration is only allowed after the fields declaration, mixing fields and methods
declarations is forbidden.

➢ A method's body must be declared in the implementation section.

What dynamic records may do:

Well, first a dynamic record is a record, so it may be used as a record: it may be copied, cleared, used in a
WITH statement, passed as a parameter and so on.

Then methods of a dynamic record may manipulate any field of the record without referring to the record
itself (implicit WITH SELF clause).

What dynamic records do not have:

✗ As this is not OOP, a dynamic record cannot inherit anything from an “ancestor”, so there's no
constructors, destructors, virtual methods and any OOP concepts.

✗ Compared to Delphi's records, they have no constructors, operators or methods overloading.

✗ Dynamic records are not initialized except by the $INIT RAM directive (as any other variable in
PMP).

Document revision: A L A N G U A G E F E A T U R E S - T Y P E D E C L A R A T I O N Page 46/101

PIC MICRO PASCAL V1.6 - USER MANUAL

How a dynamic record works:

A dynamic record method has an implicit VAR parameter that is always passed from the caller, called SELF:
it is a pointer to the record itself.

To be clear: the method in the example above is implicitly equivalent to:

procedure tMyDynRecord.Init(iX, iY: BYTE; var SELF: tMyDynRecord);
 begin
 with SELF do

 begin
 X := iX;
 Y := iY;
 B1 := true;
 B2 := true;
 end;

 end;

➢ Note: SELF is a new reserved word that refers to the record itself within a dynamic record method
only.

Document revision: A L A N G U A G E F E A T U R E S - T Y P E D E C L A R A T I O N Page 47/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.12 Variables declaration
PMP has the following variable types:

 BYTE: unsigned byte. This is the most effective format in PMP.

 CHAR: unsigned byte (see below).

 SHORTINT: integer (8 bits, signed).

 WORD: unsigned integer (16 bits, unsigned).

 INTEGER: integer (16 bits, signed).

 LONGINT: long integer (32 bits, signed).

 LONGWORD or DWORD: long word (32 bits, unsigned).

 SINGLE: floating point value in the standard 32 bits (23 bits mantissa) IEEE format (see FP chapter).

 REAL: floating point value in the special proprietary format that PMP uses internally; it is 48 bits wide
(6 bytes), with 32 bits mantissa (see FP chapter).

 BOOLEAN: boolean, uses only one bit in memory.

 ARRAY OF BYTE|CHAR|SHORTINT|WORD|INTEGER|LONGINT|LONGWORD|SINGLE|REAL: one
dimension array of simple type.

 ARRAY OF BOOLEAN: one dimension array of bits (not very efficient if indexed by a variable).

 STRING: variable length array of a maximum of 32 characters (bytes) by default (see $STRINGS
directive).

 STRING [n]: variable length array of a maximum of n characters (bytes), with n in 0..255.

 RECORD: set of simple type fields (see below).

 POINTER: untyped pointer.

 Declared TYPE.

 SFR: unsigned byte located at a processor special function register. SFRs are always treated as
VOLATILE.

3.12.1 Special behaviors
RECORD variables must use a declared type in a TYPE section before to be used. Direct variable
declaration as RECORD is not allowed.

RECORD types cannot contain a case statement (polymorphic records) and cannot contain nested records
(only one level of variables).

CHAR is implemented, but since PMP has low type checking, this is strictly equivalent to a BYTE type.
Single character literals are always treated as BYTE (Except for WRITE/WRITELN statements).

Pointers are implemented but features are limited to a subset of the standard Pascal features in the current
version of PMP (future development in the to-do list).

Arrays or strings cannot cross a RAM bank boundary, so PMP may flag a memory overflow if one cannot fit
in one bank. For PIC18+ arrays and strings may cross a RAM bank boundary.

Arrays are limited to one dimension and 256 bytes, regardless to the type of the elements. Low and high
bounds may be defined as wanted. For PIC18+ the maximum size is 64K bytes (if the processor can hold it!).

Strings are limited to 255 characters. High bound may be defined as wanted.

Document revision: A L A N G U A G E F E A T U R E S - V A R I A B L E S D E C L A R A T I O N Page 48/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.12.2 Special considerations about memory allocation
Variables may be allocated either in processor RAM or EEPROM.

Variables in EEPROM (a great PMP feature!) should be used with care since they are time consuming (write
is 5 ms typical) and the number of writes is limited.

Reading bit variables in EEPROM is implemented as byte read and masking; writing bit variables in
EEPROM is implemented as byte read, masking and write back. This is time consuming.

➢ Strings, pointers or CONST/VAR procedure/function parameters cannot be allocated in
EEPROM.

Arrays may be allocated in EEPROM.

A whole EEPROM array can be read or assigned.

An EEPROM VAR array can have initial values.

3.12.3 Some VAR Examples

CONST
 AnArrayMax = 2;
VAR
 AnArray: ARRAY[-2 .. AnArrayMax] OF BYTE; { boundaries may be negative }
 {$SPACE EEPROM} // next in EEPROM
 EE_BYTE_1, EE_BYTE_2: BYTE;
 EEArray: ARRAY[1 .. 2] OF BYTE = (100, 200); { EE arrays may have
 initial values }
 {$SPACE RAM} // next in RAM
 MyString: STRING; { defaults to 32 characters wide (see $STRINGS),

 so it uses 33 bytes }
 MyString2: STRING[4]; { 4 characters string, uses 5 bytes. }
TYPE
 tMyRecord =

RECORD
 X, Y: BYTE;
 B1, B2: BOOLEAN;
END;

VAR
 MyRecord: tMyRecord;

PMP is a single pass compiler. Variables are declared prior to their use.

Variables declared within procedures or functions are local.

Variables declared in a unit interface section are global to other units and to the main program.

Variables declared in the main program are local to the main program.

By default variables are NOT initialized by PMP; this task is left to the programmer (see CLR built-in
procedure). Nevertheless a special directive may be used to force variables initialization at startup, see
$INITIALIZE directive.

Document revision: A L A N G U A G E F E A T U R E S - V A R I A B L E S D E C L A R A T I O N Page 49/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.12.4 Banking
Most PIC micro controllers use memory banking to access the internal RAM or registers; this is not too
difficult to handle; PMP optimizes banking instructions usage because it knows anything about variable
locations since it allocates variables at compile time (not given to the assembler or linker).

3.12.5 Variables internal names (as seen by the assembler)
All variables are prefixed by the module name (program or unit), followed by a dot.

Variables declared in the global sections are internally named as declared, with the module name prefix;
variables declared within a procedure or function declaration are internally named <Module
Name>.<Procedure or function name>.<Variable name> and cannot be accessed outside.

Examples:

MyUnit.MyVar is a variable declared in a global section of the MyUnit unit.

MyUnit.MyProc.MyVar is a variable declared in the MyProc procedure of the MyUnit unit.

➢ Internal representation of symbols may be squeezed by a special algorithm to fit the 32 characters
limitation of MPASM.

3.12.6 Declaration at an absolute address
Another construction may be used to force declaration at a specific address or to assign an alias to another
variable or variable bit:

The variable type may be followed by ABSOLUTE <Address> | <Variable> [<OffsetExpression>]

The keyword @ is a PMP synonym of the ABSOLUTE keyword for variables declaration (@ is not standard
Pascal).

It is possible to add an offset expression after the aliased variable.

Examples:
CONST
 Offset = 2; // Offset into TheVar
VAR
 IoBit1: BOOLEAN @ PORTA.0; // bit of I/O on port A bit 0
 CarryBit: BOOLEAN @ STATUS.C; // alias to status carry
 TheVar2Lo: BYTE @ TheVar + (Offset + 0); // alias into TheVar
 TheVar2Hi: BYTE @ TheVar + (Offset + 1); // alias into TheVar

3.12.7 Declaration as VOLATILE
A variable may be declared as VOLATILE; this means that the optimizer will never optimize this variable due
to the knowledge of it's content, as it can change at any time between two Pascal statements.

Example:
VAR
 IntCount: VOLATILE BYTE; // Can change in interrupt

Warning: VOLATILE does not mean “atomic”: if the variable is of a type greater than one byte, PMP does
not care about if one byte may be modified between two PIC instructions. It is up to the
programmer to code special constructions to avoid atomic problems.

Note: Most of the processor's standard registers (SFR) are automatically assumed as VOLATILE, along
with variables declared as SFR.

Document revision: A L A N G U A G E F E A T U R E S - V A R I A B L E S D E C L A R A T I O N Page 50/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.12.8 Special usage of bit number or reference
PMP's special (not standard Pascal): bits within an identifier may be referenced with their bit number,
numerical or constant.

Examples:
CONST
 TheBit = 5;
VAR
 ABit: boolean;
…
 Abit := _MyVar.4;
 ABit := TheVar.TheBit;
 ABit := PORTA.0;

PMP's special (not standard Pascal): when referenced in a "set" or "dot" syntax, boolean variables return
their bit number; this is useful for I/O mappings.

Examples:
VAR
 MyInput1: boolean @ PORTA.3;
 MyInput2: boolean @ PORTA.4;
 TRISA := [MyInput1, MyInput2]; // Equivalent to [3, 4]
 TRISA.MyInput1 := TRUE; // Set TRISA.3 to 1

3.13 SFR (Special Function Register) declaration
The SFR type is a special case of the standard BYTE type, designing a processor Special Function Register,
at an absolute address.

The SFR keyword allows the programmer to declare and manipulate a Special Function Register (SFR) of
the micro-controller, if it is not defined in the standard MPAsm™ include file.

To the program, an SFR appears to be an ordinary RAM variable. The syntax for an SFR declaration is:

VAR <Identifier>: SFR @<address constant>;

Mainly, this is equivalent to:

VAR <Identifier>: BYTE @<address constant>;

Differences with a simple BYTE variable:

• The variable name is not internally prefixed by the module or procedure/function name, and is
always global.

• The variable is automatically assumed as VOLATILE.

The <Identifier> is treated as a variable name, and the <address constant> is the file register address of the
particular SFR. User declared SFR variables are always treated as bankable by PMP. The compiler will
automatically handle bank switching as needed.

Note: During MPAsm™ include file importation, PMP automatically defines all register definitions as absolute
BYTE variables (such as INDF, TMR0 …), so these identifiers cannot be redefined in the source code.

It is possible to declare a pointer to an SFR:

VAR <Identifier>: ^SFR;
➢ A user declared SFR is always assumed to be volatile: no read/write optimizations on SFRs.
➢ A pointer to SFR or a procedure / function argument of type SFR are also treated as volatile.

Document revision: A L A N G U A G E F E A T U R E S - S F R (S P E C I A L F U N C T I O N R E G I S T E R) D E C L A R A T I O N Page 51/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.14 Procedure and function declaration
Procedures and functions are implemented very closely to the standard Pascal language:

Procedure <Identifier >(<Argument list>); (forward | external (<Filename>);)
(
<CONST declaration> |
<TYPE declaration> |
<VAR declaration>
)*
BEGIN

(<Statement>)*
END;

Function <Identifier>(<Argument list>): <VAR TYPE>;
(
<CONST declaration> |
<TYPE declaration> |
<VAR declaration>
)*
BEGIN

(<Statement>)*
END;

Constants, types and variables declared in a procedure or function declaration are local and cannot be
accessed outside.

Function result type is limited to BYTE, CHAR, SHORTINT, INTEGER, LONGINT, LONGWORD, BOOLEAN
and STRING simple types. For PIC16+ results can be also of type SINGLE or REAL; it may be referenced
as a pseudo variable that is defined with the name of the function (standard Pascal syntax), or as the
RESULT pseudo variable (Delphi syntax) and is internally declared as:

<function name>.RESULT.

RESULT may not be used elsewhere as a symbol name in PMP, even outside of a function (reserved word).

Since PMP is not intended for recursion (even if it is accepted in procedures: use it with care), if the function
result name is found in an expression, the current function value is always loaded instead of generating a
recursive call.

Procedure and function arguments and local variables consume RAM space; they are internally declared as:

<procedure or function name>.<argument name>.

Procedure and function local constants do not consume RAM space (except for strings); they are internally
declared as <procedure or function name>.<constant name>.

Since the local variables and arguments are implemented in static RAM space, not on a stack, recursion
should be used with care.

➢ Procedures and functions cannot be nested as in standard Pascal.

Document revision: A L A N G U A G E F E A T U R E S - P R O C E D U R E A N D F U N C T I O N D E C L A R A T I O N Page 52/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.14.1 Function RETURN statement - NEW! (V1.6.0):
In some Pascal-like languages such as MODULA or OBERON, there's a special statement for functions:
RETURN <Expression>;

It is implemented in PMP as an "extended syntax". If the “Extended syntax” project's option is not active it will
produce a compilation error.

The following code:
IF <Condition> THEN
 RETURN <Expression>;

is strictly equivalent to:
IF <Condition> THEN
 BEGIN
 RESULT := <Expression>;
 EXIT;
 END;

3.14.2 Side effect with string buffer and function calls
In processors smaller than PIC18, PMP uses only one string temporary buffer for space reduction, there is a
special side effect in function calls in string expressions if there is a string expression in the called function;
consider the following code:

Function Func1: string;
 Begin
 // assume that Var1 contains 13
 Func1 := '-foo' + Var1 + 'bar-';
 End;
StringVar := 'hello' + Func1 + 'world';

StringVar will contain '-foo'+13+'bar-'+'world' because 'hello' was pushed in the string buffer and the string
buffer has been destroyed in the Func1 function.

Note that an expression such as 'hello'+13+10+'world'+13+10 does not use the string buffer since it is
evaluated at compile time. String buffer is used only if the expression contains non-constant sub
expressions.

Document revision: A L A N G U A G E F E A T U R E S - P R O C E D U R E A N D F U N C T I O N D E C L A R A T I O N Page 53/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.14.3 Parameter passing convention
By default, parameters are passed by value, even arrays or records.

An argument may be optionally CONST, VAR or OUT.

As boolean are implemented as single bits, there's no pointers to booleans, so VAR BOOLEAN arguments
are implemented by the compiler as a copy before and after the procedure or function call. Warning: If the
boolean is an I/O or any SFR bit, it will be updated at procedure/function return only.

CONST <Simple type> is always passed by value in current implementation.

Other CONST, VAR or OUT arguments are passed by address in the procedure or function arguments
pseudo variables. Addresses are generated as BYTE or WORD, depending to the processor memory
configuration and $POINTERS directive.

Argument types must match exactly if they are CONST, VAR or OUT, or must be compatible otherwise.

OUT arguments are a special VAR form; PMP may optimize the code, or emit a warning if used in an
expression since it knows that the variable is not initialized at entry (future implementation).

Parameters can be of type SFR. An SFR is always passed by address, even if declared as CONST. An SFR
parameter is always treated as volatile and not optimized.

Parameters can be of type “open array” (see details below); this type of parameter is always passed by
address, along with a stealth upper bound parameter.

NEW! (V1.6.0):
A CONST parameter may be qualified as ROMABLE (not standard Pascal). In this case, PMP generates a
special code that may deal either with RAM or ROM pointers. This code will be a bit less efficient but may be
useful in some cases (a good example is to pass ROM strings or arrays.

Examples:
PROCEDURE Test(X: BYTE; VAR Y: BYTE; VAR Z: BOOLEAN; S: SFR);
 BEGIN
 …
 END;
PROCEDURE Init(CONST ROMABLE T: ARRAY OF BYTE; VAR Dest: STRING);
 VAR I: BYTE;
 BEGIN
 FOR I := low(T) TO high(T) DO SomeProc(T[I], Dest);
 END;
VAR A: BYTE; B: BYTE; C: BOOLEAN;
 S: ^SFR;
…
Test(A + 1, B, C, S^);

The call to Test(A + 1, B, C, S^) will generate the following sequence:
Compute A+1.
Move result to Test.X,
Move B address to Test.Y,
Move C value to Test.Z,
Move S content to Test.S,
Call Test,
Move Test.Z value to C.

Document revision: A L A N G U A G E F E A T U R E S - P R O C E D U R E A N D F U N C T I O N D E C L A R A T I O N Page 54/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.14.4 Open array parameters
An open array parameter is a way to pass an array for which the dimension is not known, or to pass arrays
with different sizes.

Example:
PROCEDURE Test(X: ARRAY OF integer);
 BEGIN
 FOR I := LOW(X) TO HIGH(X) DO

 X[I] := I * I;
 END;
VAR
 X0: ARRAY[1..5] OF integer;
 X1: ARRAY[-2..20] OF integer;
…
Test(X0);
Test(X1);

When an array is passed as an open array parameter, its bounds are shifted so that low bound is zero, so
the low() pseudo function applied to an open array always returns 0.

An Open array parameter is always passed by address. The open array pseudo variable (X in the example)
is allocated as a pointer but occupies also an additional RAM space that is used to pass the actual high
bound of the array.

Open arrays may be passed as an argument to another procedure or function.

Open arrays cannot be assigned globally, only elements may be accessed.

3.14.5 Forward procedures and functions
Procedures and functions may be declared as forward (standard Pascal); the forwarded declaration
argument list or function result must match the first declaration, or may be omitted.

Example:
PROCEDURE ForwardProc2(VAR X: INTEGER; Y: BYTE); FORWARD;
PROCEDURE Proc1;
VAR
 A: INTEGER;
BEGIN
 ForwardProc2(A, 12); // sets A to 12
END;
PROCEDURE ForwardProc2;
BEGIN
 X := Y;
END;

Document revision: A L A N G U A G E F E A T U R E S - P R O C E D U R E A N D F U N C T I O N D E C L A R A T I O N Page 55/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.14.6 External procedures and functions
Procedures and functions may be declared as external:

Syntax 1:
PROCEDURE ExternalProc1a; EXTERNAL 'd:\MyProgram\Externals.xyz';
PROCEDURE ExternalProc1b; EXTERNAL 'd:\MyProgram\Externals.xyz';

In this syntax, PMP assumes that the two procedures are implemented externally in a separate source file in
assembler language. PMP will generate an include directive for the assembler, at the end of the module.
Several procedures and function may reside in the same include file. No check is made by PMP on the given
file name or path that must be fully qualified with its extension. If there is no path, the assembler default
include path will be used.

Note that PMP does not generate a separate .asm file for externals; they are included in the current module;
they should NOT contain an END assembler directive.

Warning: if declared in a unit with this syntax, the assembler include directive is always generated and the
parameters consume RAM space. If declared in the main program, the assembler include directive is only
generated if the procedure or function has been used. Nevertheless the parameters always consume RAM
space, even if they are not used.

Syntax 2:
PROCEDURE ExternalProc2; EXTERNAL;

In this syntax, the procedure is declared external for the assembler and will be solved by the linker. The file
must be explicitly given to the linker (add it to the additional files list in the project options).

External procedures and functions may have arguments; they are always allocated in RAM by the compiler,
even if they are not used. Assembler instructions may access these variables and global variables as well
(see naming convention in chapter 3.14). Note that the parameters are always prefixed with the module
name where the external function or procedure is defined.

3.14.6.1 Memory allocation in assembler modules
External procedures and functions may have local storage for variables, but since they are not controlled by
the compiler, this may generate troubles.

Memory allocation should not be explicitly addressed to avoid memory overlapping with compiler generated
variables, so use MPLAB® UDATA, UDATA_SHR or UDATA_ACS simple directives without addressing, like
this MPLINK® will allocate the storage in areas unused by the compiler; since real address is unknown at
writing time, bank is also unknown: banksel pseudo instructions should be used.

The $RESERVED directive may be used to reserve storage that is forbidden to the compiler.

Also the $VARIABLES directive may be used to limit compiler RAM space and manage storage for absolute
variables (not recommended).

Document revision: A L A N G U A G E F E A T U R E S - P R O C E D U R E A N D F U N C T I O N D E C L A R A T I O N Page 56/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.15 Interrupt special procedures
A procedure may be defined with the INTERRUPT qualifier (with no arguments):

PROCEDURE InterruptProc; INTERRUPT;
And for PIC18+ processors that have 2 levels of interrupts (note that “LOW” is assumed if omitted):

PROCEDURE InterruptProc; INTERRUPT; LOW;
PROCEDURE InterruptProc; INTERRUPT; HIGH;

This procedure is to be executed in the case of a processor interrupt.

Interrupt procedures may be multiple and in several units or in the main program (see also the
$INTERRUPTS directive).

The compiler inserts the necessary context save / restore code for common registers and system variables.

According to the $INTERRUPTS directive, the code scheme is different:

If $INTERRUPTS MULTIPLE (default):

There may be several interrupt procedures (per priority if PIC18). Each interrupt procedure is called in turn.
The order is the order of unit compilations. It is the responsibility to the programmer to check interrupt
conditions and pertinence at the beginning of each procedure.

Interrupt code generated by the compiler:
<Context save>
<Call to the 1st interrupt procedure>
…
<Call to the nth interrupt procedure>
<Context restore>
<RETFIE>

If $INTERRUPTS UNIQUE :

This option saves one hardware stack level and may be useful for simple treatments. There may be only one
interrupt procedure (per priority if PIC18). It is the responsibility to the programmer to check interrupt
conditions and pertinence at the beginning of the procedure.

Interrupt code generated by the compiler:
<Context save>
<Interrupt procedure body>
<Context restore>
<RETFIE>

The context saving is made regarding of the PIC registers and PMP internal variables that are used in the
interrupt procedures and by one level of called procedures and functions or internal subroutines.

This does not include procedure and functions parameters and internal variables, so they are definitely not
reentrant if such variables are defined.

The "one level" scheme is not waterproof; within an interrupt procedure it should be avoided to call
procedures and functions that may call another procedures and functions.

Likewise, PMP internal subroutines should be used with care since most of them may be not reentrant and
some special functions passing arguments are not saved and would be destroyed.

Using the $OPTIMIZE SPEED directive inside interrupt procedure may help, but special features should not
be used, this includes (not limited to): FP math, all block moves and some built-in functions and procedures.

Generally PMP warns about possible reentry issue but again, this is not bulletproof.

There is no special limitation in interrupt procedures, local variables, constants and types may be used.
Assignments to global variables greater than a single byte or boolean should be used with care since global
variable read or writes may be interrupted in the middle of the variable move and the result may be
unpredictable (“atomic” problem; this is not PMP or PIC specific).

Document revision: A L A N G U A G E F E A T U R E S - I N T E R R U P T S P E C I A L P R O C E D U R E S Page 57/101

PIC MICRO PASCAL V1.6 - USER MANUAL

3.16 Main program block
The main program block is the last defined block of a program, and has the following standard syntax:

BEGIN
(<Statement>)*

END.

These statements are executed in serial fashion immediately upon processor reset (after main start-up code
and unit initializations, see below). The execution section is terminated with an END keyword, followed by a
dot.

➢ At the end of the execution section, the compiler automatically inserts a jump to the beginning of the
main program block, so a WHILE TRUE DO BLOCK; construction is not necessary, a program is an
implicit forever loop.

3.17 Unit initialization block
The unit initialization block is an optional section and must be the last defined block of a unit. It has the
following standard syntax:

INITIALIZATION
(<Statement>)*

END.

These statements are executed once in serial fashion immediately upon processor reset, before execution of
the main program block (The order of execution is the order of the units compilation).

The execution section is terminated by the normal unit END keyword, followed by a dot.

Document revision: A L A N G U A G E F E A T U R E S - U N I T I N I T I A L I Z A T I O N B L O C K Page 58/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4 Statements

4.1 Assignments and expressions
PMP parses expressions containing constants, variables and function calls, and obeys the normal rules of
precedence.

PMP has no type checking for simple variables, so any combination of types may be used (possible
truncation will produce a warning).

Boolean variables or bits are internally used as single bits but if used in non-boolean expressions they are
converted by an implicit ORD to byte values of TRUE (1) or FALSE (0).

In non-strict mode, for boolean expressions any value other than zero is treated as TRUE, so this
construction is allowed, even for non-boolean variables:

IF Variable THEN
It will generate the same code than:

IF Variable <> 0 THEN
Use of simple constants may be optimized by PMP:

A "while <Constant expression evaluated to false> do <block>" will not generate any code.

A "if <Constant expression evaluated to false> then <block>" will not generate any code, if an "else <block>"
exists, only this "else <block>" will be generated.

A "while <Constant expression evaluated to true> do <block>" will generate only <block> that loops forever.

This may help for conditional compilation if configuration constants are used (may be used the same way as
$IFDEF/$ENDIF blocks).

In PMP two boolean constants are predefined: TRUE = 1 and FALSE = 0. Since there is no type checking on
booleans in non-strict mode, either TRUE and FALSE or 0 and 1 may be used for booleans.

The syntax for a variable assignment is:
<Variable> := <Expression>;

Where:
<Expression> ::= <Relation> | <Term> (+ | - <Term>)*
<Relation> ::= <BoolExpression> (<BoolOp> <BoolExpression>)
<Term> ::= <Factor> (* | DIV | / | MOD <Factor>)*
<Factor> ::= (+ | -)* <Constant> | (<Expression>) | <Variable> | <Variable>.<bit> | <Function Call>
<Constant> ::= any valid numeric or character constant
<BoolExpression> ::= <Expression> (<relop> <Expression>)
<Relop> ::= = | <> | < | > | <= | >= | IN
<Boolop> ::= AND | OR | XOR | SHL | SHR
<Function Call> ::= <Function Name> ((<FunctionArgs>))
<Function Name> ::= <UserFunctionName> | <BuiltinFunctionName>

4.1.1 SHR & SHL "normal" behaviors
As in standard Pascal, SHR and SHL applied to signed numbers implies an automatic cast to unsigned, so
shifts are always "logical" - never "arithmetic".
This is Pascal standard. Period.
This explanation is to anticipate discussions on this subject. The C standard says there is no standard for >>
and << operators on signed numbers. This is left "implementation dependent" and the consequence is that
their behaviors differ between compilers and the subject generates long discussions in forums and
discussion lists...

Note that the PMP optimizer engine is smart enough to use "logical shifts" or "arithmetic shifts" when an
unsigned or a signed number DIV by a power of two is required. Direct use of SHR will not improve the code
efficiency. PMP also uses SHL to multiply by a power of two in some circumstances.

Document revision: A S T A T E M E N T S - A S S I G N M E N T S A N D E X P R E S S I O N S Page 59/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.1.2 Divide operator /
For processors < PIC16 it can be used instead of the DIV keyword since PMP does not deal with floating
point on these processors, so it is an alias (Pascal rule overload). This behavior is kept for compatibility
with times where there was no floating point in PMP, but it is not recommended since there's source
compatibility issues.

For processors >= PIC16, this is the normal floating point divide operator, so the result is always float.

4.1.3 Logical operators
AND, OR, XOR operators are 8 bits BYTE / CHAR / SHORTINT, 16 bits WORD / INTEGER or 32 bits
LONGWORD / LONGINT wide.

4.1.4 Operand size promotion, signed or unsigned
PMP uses the smallest possible size for evaluating each term in an expression and promotes its internal
accumulator size as needed, so mixing types in expressions is not reversible. Possible truncations will
produce a warning message. Possible overflows never produce any warning.

A typical example is also to compare an INTEGER to a WORD. Since a WORD may be >32767, both are
expanded to LONGINT before to compare, so the result is accurate.

Since PMP has no 64 bits integers (even internally), this cannot apply to LONGINT / LONGWORD
compares, so such compare is made SIGNED.

For math operators, if one term is signed, the result is signed else it is unsigned.

When needed, PMP may expand to floating point if one term is a FP. Assignment of a FP to an integer
variable (in $STRICT OFF mode) or an integer to a FP variable is allowed in PMP (with warning in the FP
integer way); the compiler generates automatically the appropriate conversions. Please note that PMP
internal FP routines use REAL format for precision; SINGLE values or variables are always converted to
REAL before computing. SINGLE is provided for 32 bits IEEE compatibility and variable storage reduction.

Example:

In:
VAR B1, B2, B3, B4: BYTE; W1, W2: WORD;
// possible overflow on byte multiplication if (B1 * B2) > 255
B1 := B1 * B2 * W1 + B3 * W2;

The expression is evaluated as:

B1 := BYTE(WORD(B1 * B2) * W1 + WORD(B3) * W2);

This is not the same as:

In:
VAR B1, B2, B3, B4: BYTE; W1, W2: WORD;
// No overflow on byte multiplication
B1 := B1 * W1 * B2 + B3 * W2;

Where the expression is evaluated as:

B1 := BYTE(WORD(B1) * W1 * WORD(B2) + WORD(B3) * W2);

Note: both cases will produce a warning message for byte truncation on B1 assignment.

Be careful to use the highest precision term at a leftmost possible position if intermediate results may
overflow.

Document revision: A S T A T E M E N T S - A S S I G N M E N T S A N D E X P R E S S I O N S Page 60/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.1.5 Bit results and related special behaviors
Relations will generate boolean wide results (FALSE = 0, TRUE = 1). PMP has a special internal Boolean
accumulator / stack, so it can deal with pure Boolean operators.

A means to set/clear/test a bit within a variable also exists, through the "dot notation": the <variable>.<bit>
form allows the program to test or assign a single bit in any integer variable. <bit> is a numeric constant
value or an identifier that was declared as a numeric constant and <variable> may be of either a variable or
constant type. Bit must be between 0 and the maximum bit number of the variable (7..31), where 0 is the
LSB. For bit tests, if the bit is set, the factor evaluates as TRUE (1), else it evaluates as FALSE (0).

<Variable>.<bit> := <Expression>

<Expression> is reduced to a BOOLEAN nature (anything other than zero is considered as TRUE), the state
of <bit> within <variable> will be set to match the outcome of <Expression>.

Usually <bit> may be an integer literal or constant.

PMP allows referring to a boolean variable for <bit>; the code generated will use the bit number of the
boolean variable. PMP does not check the pertinence of such construction…

Example:
VAR
 Input1: boolean @ PORTC.4;
 TRISC.Input1 := true; // set input mode for PORTC.4

Relations will produce bit Booleans; the NOT instruction will invert a bit Boolean. For other types of variables,
the NOT operator will invert the whole value so consider the differences:

VAR
 Bit1: Boolean;
 Byte1, Byte2: Byte;
 Bit1 := TRUE; // single bit Boolean, set to 1 (Boolean true)
 Byte1 := Bit1; // byte variable set to 1 (Boolean true)
 Byte2 := NOT Byte1; // byte variable set to $FE (NOT $01)
 Byte2 := NOT Bit1; // byte variable set to 0 (NOT TRUE)

4.1.6 Bit expressions and statements
If the $CODEGEN 1+ directive is used, the compiler switches to a special bit expressions and statements
mode.

All operators or function calls are supported in bit expressions except the negate operator.

The difference in bit expressions, is that the * operator (multiply) is interpreted as an alias of AND, the +
operator (add) as an alias of OR and the / operator is an alias of NOT, so that expressions like ones used in
PLCs may be used.

Example:

{$CODEGEN 1+ PLC MODE}
Out1 := (/In1 + In2) * In3; // Equivalent to (NOT In1 OR In2) AND In3;
{$CODEGEN 1- END OF PLC MODE}
{ Note:
 operator * has the maximum precedence in expressions evaluations, so: }
Out1 := In1 + In2 * In3 + In4;
{ Is equivalent to: }
Out1 := In1 + (In2 * In3) + In4;

Document revision: A S T A T E M E N T S - A S S I G N M E N T S A N D E X P R E S S I O N S Page 61/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.2 WITH statement
PMP allows a limited form of the standard WITH statement:

WITH <Identifier> (, <Identifier>)* DO
<Block>

This statement does not generate code in PMP; it is only a programming facility.

Precedence is last to first identifier.

Restrictions :

In the present implementation of PMP, the following forms are not accepted:

WITH <Identifier>^ DO …
WITH Identifier DO … where <Identifier> is a pointer variable.
WITH <Identifier>.<SubField> DO ... where <Identifier> is a record type.

4.3 CASE statement
PMP allows the following standard form of the CASE statement:

CASE <Expression> OF
(<ConstRange> (, <ConstRange>)*:

<Block>)*
(ELSE <Block>)

END;

Where:

<ConstRange> ::= <ConstExpr> (.. <ConstExpr>)
<ConstExpr> is any constant expression that the compiler can evaluate at this point.

Restrictions :

<Expression> and <ConstExpr> should evaluate to a BYTE result (else a byte truncation warning will be
produced).

CASE constructions are implemented as a set of compare values or as a jump table, depending on the
complexity, to optimize speed and memory.

Document revision: A S T A T E M E N T S - C A S E S T A T E M E N T Page 62/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.4 IF statement
IF <Expression> THEN <Block>
(ELSE <Block>)

IF statement is optimized for bit Boolean use, but in non-strict mode PMP also accepts a non-boolean
expression: any value that is not zero is evaluated as TRUE (1).

Optimizations:

If <Expression> evaluates to a constant value equal to 0 (FALSE), no code is generated for the
<Expression> evaluation and for the next block and the ELSE block is generated.

If <Expression> evaluates to a constant value not equal to 0 (TRUE), no code is generated for the
<Expression> evaluation and the next block is generated and no code is generated for the ELSE block.

These two cases permit the use of constants for generating code that is always checked, in replacement to
$IFDEF constructs that are not.

4.5 ELSEIF statement - NEW! (V1.6.0)NEW! (V1.6.0)
ELSEIF is implemented in some Pascal-Like languages such as MODULA or OBERON (as ELSIF keyword).

It is implemented in PMP as an "extended syntax". If the “Extended syntax” project's option is not active it will
produce a compilation error.

IF <Expression> THEN <Block>
(ELSEIF <Expression> THEN <Block>)*
(ELSE <Block>)

the number of ELSEIF statements is not limited.

The same behaviors as the IF statement apply; if one of the IF or ELSEIF <Expression> is true, its <Block> is
executed and the ELSE <Block> is not executed; else if none of the IF or ELSEIF <Expression> is true, the
ELSE <Block> is executed.

Document revision: A S T A T E M E N T S - E L S E I F S T A T E M E N T - N E W ! (V 1 . 6 . 0) Page 63/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.6 WHILE statement
WHILE <Expression> DO <block>;

The WHILE statement is optimized for boolean use, but in non-strict mode PMP also accepts a non-boolean
expression: any value that is not zero is evaluated as TRUE (1).

Optimizations:

If <Expression> evaluates to a constant value equal to 0 (FALSE), no code is generated for the
<Expression> evaluation and for the next block.

If <Expression> evaluates to a constant value not equal to 0 (TRUE), no code is generated for the
<Expression> evaluation, the next block is generated and loops forever.

The loop flow may also be controlled via BREAK and CONTINUE statements.

4.7 REPEAT statement
REPEAT <Block> UNTIL <Expression>;

The REPEAT statement is optimized for boolean use, but in non-strict mode PMP also accepts a non-
boolean expression: any value that is not zero is evaluated as TRUE (1).

Optimizations:

If <Expression> evaluates to a value of 0 (FALSE), no code is generated for the <Expression> evaluation
and the block does not loop.

If <Expression> evaluates to a value not equal to 0 (TRUE), no code is generated for the <Expression>
evaluation and the block loops forever.

The loop flow may also be controlled via BREAK and CONTINUE statements.

4.8 LOOP statement
NEW! (V1.6.0)NEW! (V1.6.0)::

LOOP <Block> END;

This particular form of a loop exists in some other Pascal-like languages such as MODULA or OBERON.

Formally it is equivalent to a REPEAT <Block> UNTIL FALSE; loop.

It is implemented in PMP as an "extended syntax". If the “Extended syntax” project's option is not active it will
produce a compilation error.

The loop flow may be controlled via BREAK and CONTINUE statements.

Document revision: A S T A T E M E N T S - L O O P S T A T E M E N T Page 64/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.9 FOR statement
FOR <Variable> := <Expression1> TO | DOWNTO <Expression2> [BY <ConstantExpression>] DO <Block>
NEW! (V1.6.0)NEW! (V1.6.0)::

The BY clause is implemented in some other “Pascal-like” languages such as MODULA or OBERON, it
permits to specify the increment value for <Variable>. If present, the BY value must be a constant and
evaluated as positive for a TO loop and negative for a DOWNTO loop.

The BY clause is implemented in PMP as an "extended syntax". If the “Extended syntax” project's option is
not active it will produce a compilation error.

➢ In the following pseudo-codes, <Temp> is a stealth variable that is generated by the compiler.

If <Expression2> does not evaluate to a constant, in the current implementation of PMP the FOR – TO loop
is implemented as an equivalent of:

<Variable> := <Expression1>;
<Temp> := <Expression2>;
IF <Variable> <= <Temp> THEN
 WHILE TRUE DO
 BEGIN
 <Block>
 IF <Variable> < <Temp> THEN
 INC(<Variable>)
 ELSE
 BREAK;
 END;

And as well the FOR – DOWNTO loop:

<Variable> := <Expression1>;
<Temp> := <Expression2>;
IF <Variable> >= <Temp> THEN
 WHILE TRUE DO
 BEGIN
 <Block>
 IF <Variable> > <Temp> THEN
 DEC(<Variable>)
 ELSE
 BREAK;
 END;

If <Expression2> evaluates to a constant, in the current implementation of PMP, the FOR – TO loop is
implemented as an equivalent of:

<Variable> := <Expression1>;
IF <Variable> <= <Expression2> THEN
 WHILE TRUE DO
 BEGIN
 <Block>
 IF <Variable> <> <Expression2> THEN
 INC(<Variable>)
 ELSE
 BREAK;
 END;

Document revision: A S T A T E M E N T S - F O R S T A T E M E N T Page 65/101

PIC MICRO PASCAL V1.6 - USER MANUAL

And as well the FOR – DOWNTO loop:

<Variable> := <Expression1>;
IF <Variable> >= <Expression2> THEN
 WHILE TRUE DO
 BEGIN
 <Block>
 IF <Variable> <> <Expression2> THEN
 DEC(<Variable>)
 ELSE
 BREAK;
 END;

There are some special behaviors from other “standard” Pascal implementations:

• End value is evaluated once at the beginning and stored in a stack temporary variable if needed.

• <Variable> is always set to <Expression1> at first evaluation, unless some cases listed in the
optimizations, see below.

• <Variable> content at normal loop termination is equal to <Expression2> if one loop has been executed,
or <Variable> still contains <Expression1> if <Expression2> was reached at the first evaluation.
Nevertheless, standard Pascal specification states that variable value at the end of a loop is not
predictable and should not be used.

• A check is made by PMP to forbid <Variable> assignment inside the loop or passing <Variable> as a
VAR argument.

Optimizations:

If <Expression1> and <Expression2> evaluates to the same constant value, the <block> is executed once,
no loop code is generated.

If <Expression1> and <Expression2> evaluates to constant values, and <Expression1> is over
<Expression2>, no code is generated, even for the loop variable assignment.

Document revision: A S T A T E M E N T S - F O R S T A T E M E N T Page 66/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.10 FOR iterator NEW! (V1.6.0)NEW! (V1.6.0)
This particular form of the FOR statement has been introduced in the latest versions of Delphi and in FPC.
It is implemented in PMP as "standard Pascal".

FOR <Variable> IN <Enumerable> DO <Block>

<Enumerable> may be:

– An array variable,

– A string variable or a string literal,

– An enumerated type,

– A simple type variable (BYTE, CHAR, SHORTINT, WORD, INTEGER, LONGWORD, LONGINT); this
is a PMP special behavior, not a standard Pascal one, see below.

<Variable> is any simple variable compatible with the <Enumerated> element type.

Unlike a classic FOR loop which may loop with index values, the iterator loops on all element values
contained in <Enumerable>: this element value will be written in <Variable>.

Both <Variable> and <Enumerable> are read-only during the loop.

➢ In the following pseudo-codes, <Temp> is a stealth variable that is generated by the compiler,
containing the index in <Enumerable>.

The iterator behavior will differ a bit according to the type of <Enumerable>:

• For an ARRAY <Variable> will contain all values contained in the array, the loop is implemented as
an equivalent of:

<Temp> := low(<Enumerable>);
WHILE TRUE DO
 BEGIN

<Variable> := <Enumerable>[<Temp>];
 <Block>
 IF <Temp> < high(<Enumerable>) THEN
 INC(<Temp>)
 ELSE
 BREAK;
 END;

• For a STRING <Variable> will contain all characters of the string; if the string is empty, <Block> will
not be executed. The loop is implemented as an equivalent of:

<Temp> := 0;
WHILE TRUE DO
 IF <Temp> = length(<Enumerable>) THEN

BREAK
 ELSE
 BEGIN
 INC(<Temp>)

 <Variable> := <Enumerable>[<Temp>];
 <Block>
 END;

Document revision: A S T A T E M E N T S - F O R I T E R A T O R N E W ! (V 1 . 6 . 0) Page 67/101

PIC MICRO PASCAL V1.6 - USER MANUAL

• For an enumerated TYPE <variable> will contain all possible values of the type. The loop is
implemented as an equivalent of:

FOR <Variable> := LOW(<Enumerable>) TO HIGH(<Enumerable>)DO
 <Block>

• For a simple type variable <Variable> will contain all bit positions that are 1. The loop is implemented
as an equivalent of:

FOR <Temp> := 0 TO (SizeOf(<Enumerable>) * 8) - 1 DO
 IF <Temp> IN <Enumerable> THEN
 <Block>

4.11 BREAK statement
Inside a WHILE, REPEAT, FOR or LOOP control statement, loop termination may be issued with the
BREAK keyword:

 FOR I := 0 TO 10 DO
 BEGIN
 IF A = 0 THEN

 BREAK; // exit for loop
 // Code not executed if A=0

 END;

The BREAK statement is equivalent to a GOTO to the next instruction after the loop block.

4.12 CONTINUE statement
Inside a WHILE, REPEAT, FOR or LOOP control statement, loop continuation may be used with the
CONTINUE keyword:

 FOR I := 0 TO 10 DO
 BEGIN
 IF A = 0 THEN
 Continue; // next loop iteration
 // Code not executed if A = 0

 END;

The CONTINUE statement is equivalent to a GOTO to the evaluation of the loop control expression.

Document revision: A S T A T E M E N T S - C O N T I N U E S T A T E M E N T Page 68/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.13 ASM statement
An assembler block may be inserted at any point, within or outside of a procedure or function or main
program block.

A basic assembler block (LOW, see below) is not analyzed by PMP; its content is passed directly to the
assembly file and syntax check is made by the assembler:

 ASM
 MOVFF MyProg.MyFunc.I, MyProg.MyFunc.J ; move variable

CALL MyProg.OtherProc
 END;

No assumption should be made on the current selected ram bank at the block beginning.

As well PMP assumes that the current selected ram bank is unknown at the end of the block, and that any
file register content is unknown too (reset of the optimizer data).

Labels should not interfere with PMP ones (all PMP labels starts with two underscores).

An ASM block may be used to declare things outside of a code block:

 ASM
MYCONST EQU 128 ; some constant
MYMACRO MACRO X, Y
…
 ENDM
 END;

The ASM block has been upgraded to resolve PMP symbols and translate them in fully qualified internal
names.

Due to the possibility of conflicts, the syntax has been modified to accept a parameter:

• ASM(LOW) is a low level assembler block (old behavior), no analysis / translation of symbols.

• ASM(HIGH) (without parameter this is the default) is a high level assembler block, where symbols
are automatically translated, along with some reformatting features:

 ASM
 MOVFF I,J; move variable

CALL OtherUnitProc
 END;

will be translated to:
 ASM
 MOVFF MyProg.MyFunc.I, MyProg.MyFunc.J ; move variable

CALL OtherUnit.OtherUnitProc
 END;

Special warning for interrupt procedures:

ASM blocks should be used with care within an interrupt procedure, or in a procedure or function called by an
interrupt procedure, since PMP has no means to analyze the block to know what are the used registers and
thus to know which one to save and restore.

Document revision: A S T A T E M E N T S - A S M S T A T E M E N T Page 69/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.14 Implied PIC statements
Despite that PMP tries to not have special registers built-in manipulation functions, some special PIC
features must be available for the programmer. PMP supports the following implied statements:

CLRWDT Clear the PIC's watchdog timer.
RESET Depending on the processor, generates a software RESET instruction or a jump

to address 0.
SLEEP Put the PIC in sleep state. The processor will wake-up on interrupt or WDT if

activated.
NOP or NOP(<Constant>) Generates a single or multiple processor's NOP instruction.

4.15 Built-in functions
PMP supports the following standard functions:

ABS(<Expression>)
Returns the absolute value of the given expression. If the given expression results to an integer size
different from INTEGER or LONGINT, the function returns the expression unchanged (unsigned
expression). Else the ABS value is generated as Result := - <Expression> if <Expression> is negative.
Side effect for integer values : if Expression is equal to the minimum value of the expression width, the
result is <Expression> (ABS(-32768) result is -32768).
If <Expression> returns a floating point value, the result is in the same type as <Expression>.

CHR(<Identifier_or_numeric>)
Returns the character value of <Identifier_or_numeric>, truncated to byte. The result type is CHAR.

DEFINED(<Conditional Identifier>) | DEFINED('<Conditional Identifier String>')
Special built-in function that can be used in conditional expressions ($IF and $ELSEIF directives) and in
any expression in normal code. It returns TRUE if <Conditional Identifier> is $DEFINE(d) at this point
(equivalent to the IFDEF directive). The second form accepts ‘?’ and ‘*’ wild card characters in the string
to match more than one symbol.

DECLARED(<Identifier>)
Special built-in function that can be used in conditional expressions and in any expression in normal
code. It returns TRUE if <Identifier> is a Pascal identifier (constant, type, variable, function or procedure
name) that has been declared at this point.

EEREAD(<Address Expression>)
EEREAD(<Address Expression>, BYTE|CHAR|SHORTINT|WORD|INTEGER|LONGWORD|LONGINT)
EEREAD(<Address Expression>, <Size Expression>)

Returns EEPROM byte from a direct address; uses standard EEPROM processor registers. If <Address
Expression> evaluates to a width greater than BYTE, a truncation occurs and a warning is produced. If
<Address Expression> is a constant, a bounds check is made regarding processor's implementation.
The second form specifies the read length (number of bytes); in this case the returned value is in the
specified size.
The third form may be used to specify the size with a constant expression returning the value 1, 2 or 4.
According to this size, the returned value is BYTE, WORD or LONGWORD.

HEX(<Expression>)
Returns the hexadecimal ASCII digit equivalent ('0'..'9', 'A'..'F') to the low nibble of <Expression> (a mask
for the low nibble is not necessary).

Document revision: A S T A T E M E N T S - B U I L T - I N F U N C T I O N S Page 70/101

PIC MICRO PASCAL V1.6 - USER MANUAL

HI(<Expression>)
Returns the high byte of an expression truncated to WORD.

HIGH(<Identifier>)
Returns high bound of an ARRAY, enumerated or range type (returns max length for a STRING type), or
max value of a simple variable or type:
HIGH(boolean) returns 1.
HIGH(shortint) returns 127 ($7F).
HIGH(byte) returns 255 ($FF).
HIGH(word) returns MAXWORD = 65,535 ($FFFF).
HIGH(integer) returns MAXINT = 32,767 ($7FFF).
HIGH(longint) returns MAXLONGINT = 2,147,483,647 ($7FFFFFFF).
HIGH(longword) returns MAXLONGWORD = 4,294,967,295 ($FFFFFFFF).
HIGH(single) returns approximately 3.4E+38 (not standard Pascal).
HIGH(real) returns approximately 6.8E+38 (not standard Pascal).

LENGTH(<Identifier>)
Returns the length, in elements, of an ARRAY type or a STRING type. For an ARRAY type the length is
the number of elements of the array. For a STRING type, the length is the actual length of the string, not
the total number of bytes (see SIZEOF) or the max number of characters (see HIGH).

LO(<Expression>)
Returns the low byte of an expression result.

LOW(<Identifier>)
Returns low bound of an ARRAY type or range type (returns zero for STRING type and enumerated
types), or min value of a simple integer variable or type, or epsilon (smallest value) for a float variable or
type:
LOW(boolean|byte|word) returns 0.
LOW(shortint) returns -128 ($80).
LOW(integer) returns -32,768 ($8000).
LOW(longint) returns -2,147,483,648 ($80000000).
LOW(longword) returns 0,
LOW(single) returns approximately 1.5E-45 (not standard Pascal).
LOW(real) returns approximately 1.17E-38 (not standard Pascal).

MUL18(<Variable1>, <Variable2>)
Optimized multiply of two 8 bits unsigned variables, giving a 16 bits result. This function has been
designed to take advantage of the PIC18 8 bits multiply single instruction. On other processors this
instruction is enabled but generates standard multiplication code.

ORD(<Identifier_or_numeric>)
Returns the numerical value of <Identifier_or_numeric>. This function is actually implemented for
compatibility (simply returns <Identifier_or_numeric> value without modification); the result type is the
smallest standard integer type that can hold all values of <Identifier_or_numeric>'s type.

PRED(<Identifier_or_numeric>)
Returns the previous numerical value of <Identifier_or_numeric>. If <Identifier_or_numeric> refers to a
boolean variable, the result is always FALSE. Range checking is made only if <Identifier_or_numeric>
refers to a constant value identifier.

SIZEOF(<Identifier>)
Returns the total number of bytes used by a constant string or variable in memory (RAM, EEPROM or
CODE for literal strings). For simple boolean types, the function returns 1 and a warning is generated
since a bit occupies only one bit. For literal strings, SIZEOF returns the total number of characters plus
one, even if the string is not generated in code segment as RETLW sequence, due to optimization.

Document revision: A S T A T E M E N T S - B U I L T - I N F U N C T I O N S Page 71/101

PIC MICRO PASCAL V1.6 - USER MANUAL

SUCC(<Identifier_or_numeric>)
Returns the next numerical value of <Identifier_or_numeric>. If <Identifier_or_numeric> refers to a
boolean variable, the result is always TRUE. Range checking is made only if <Identifier_or_numeric>
refers to a constant value identifier.

UPCASE(<Identifier_or_numeric>) NEW! (V1.6.0):
Returns the uppercase character corresponding to the given parameter. The result type is CHAR.

Cast functions:

BYTE|CHAR|SHORTINT|WORD|INTEGER|LONGWORD|LONGINT (<Expression>)
If <Expression> returns an integer type value, cast (truncate or expand) the expression result to the
specified format.
If <Expression> returns a floating point value, convert (and truncate) the expression result to the
specified format. A truncation warning may occur.

SINGLE|REAL (<Expression>)
Convert the expression result to the specified format.

Document revision: A S T A T E M E N T S - B U I L T - I N F U N C T I O N S Page 72/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.16 Built-in procedures
PMP supports the following instructions that modify variables, often more efficiently than assignments with
expressions (on 8, 16 or 32 bits variables):

CLR(<Variable>)
Clear (fill all with zero) <Variable>. <Variable> may be any variable, simple, ARRAY, STRING or
RECORD, in RAM or EEPROM. For strings, only the length byte is cleared. This is an equivalent to a
FillChar(<Variable>, sizeof(<Variable>), 0) stupid statement in TP/Delphi.

INC(<Variable>) or INC(<Variable>, <Increment>)
Increment <Variable> by one or by <Increment>; <Increment> may be any expression.
If <Variable> is a pointer, it is incremented to point to the next item or <Increment> items forward.

DEC(<Variable>) or DEC(<Variable>, <Decrement>)
Decrement <Variable> by one or by <Decrement>; <Decrement> may be any expression.
If <Variable> is a pointer, it is decremented to point to the previous item or <Decrement> items backward.

ROL(<Variable>) or ROL(<Variable>, <Constant expression>)
Rotate <Variable> left by one position or by <Constant expression> positions, inserting MSB to LSB.

ROR(<Variable>) or ROR(<Variable>, <Constant expression>)
Rotate <Variable> right by one position or by <Constant expression> positions, inserting LSB to MSB.

Document revision: A S T A T E M E N T S - B U I L T - I N P R O C E D U R E S Page 73/101

PIC MICRO PASCAL V1.6 - USER MANUAL

Next, PMP supports the following standard procedures:

ASSIGN(OUTPUT, <Output procedure>]*)
Or:
ASSIGN[(INPUT, <Input function>]*)]
Or:
ASSIGN[(ERROR, <Error procedure>]*)]

Where:
<Output procedure> may be any procedure name that is defined with one and only one BYTE or CHAR
argument.
<Input function> may be any function name that is defined with a BYTE or CHAR result type, with no
arguments.
<Error procedure> may be any procedure name that is defined with one and only one BYTE or CHAR
argument.

Purpose:
This is the way a user defined console I/O routine may be assigned to the standard console READ,
READLN, WRITE and WRITELN built-in procedures.
The ERROR routine is called when there is a unrecoverable runtime error (eg: memory allocation
failure). Since program stability is engaged, after the procedure call the MCU is "halted" by an infinite
loop (interrupts are not disabled, WDT may trigger). The argument receives the error code as an ASCII
digit ($30, ...).

PMP specificities:
By default nothing is assigned to INPUT, OUTPUT and ERROR pseudo files. If a pseudo file is not
assigned, the related console I/O calls will do nothing.
Pseudo files cannot be closed. They may be re-assigned (even with NIL).

Example:
procedure MyOutput(Ch: char);
…
 assign(output, MyOutput); { This will assign the procedure MyOutput for
 all further WRITE / WRITELN procedure calls }

Document revision: A S T A T E M E N T S - B U I L T - I N P R O C E D U R E S Page 74/101

PIC MICRO PASCAL V1.6 - USER MANUAL

BAUD(rate)
Generates all initializations necessary to use asynchronous only communications at the given baud
rate using the TXSTA/RCSTA registers. If the processor has no such registers, an error will occur.
The generated code is optimized regarding the current FREQUENCY and does not validate
interrupts; this is left to the programmer. After this procedure call, all asynchronous communications
are ready to use (TRIS register bits, asynchronous mode, TX/RX mode). If the given baud rate
cannot be implemented within 1% accuracy, a compiler error will occur. The real baud rate and
percent of error is output as comment in the .asm file.

DELAY(microseconds), DELAY_MS(milliseconds), DELAY_NS(nanoseconds), DELAY_CY(cycles)
Wait the given number of microseconds, milliseconds, nanoseconds or cycles; delays are
implemented as NOP instructions and / or loops, according to the required number of cycles. The
code is generated according to the declared processor FREQUENCY. Impossible or inaccurate
delays will generate warnings. Due to internal mechanisms of PMP, resolution, minimum and
maximum delay may be limited according processor frequency. Delays do not use interrupts and so
may be non accurate if there is lot of interrupts.
For DELAY_MS and DELAY_CY, the argument may be a WORD sized variable or computed
expression; else argument must be a constant expression.
For DELAY_CY minimum value is 32. Note that NOP(Count) may be used for small timings.

DISPOSE(<Identifier>)

Where:
<Identifier> is a typed pointer variable.

Purpose:
Free the dynamic variable pointed to by the given variable. <Identifier> is any typed pointer variable. The
size of the freed memory block depends of the size of the type pointed by <Identifier>.
There is no heavy check for pointer coherency (there is only a check that this is a valid RAM address).
The allocated memory should have been allocated by a call to the NEW or GETMEM standard built-in
procedures.
This procedure is implemented for PIC18 and PIC16 enhanced mid-range only. See also: PMP
dynamic memory allocation (§ 4.20).

EEWRITE(<Address Expression>, <Expression>)
EEWRITE(<Address Expression>, <Expression>, BYTE|CHAR|SHORTINT|WORD|INTEGER|LONGWORD|

LONGINT)
EEWRITE(<Address Expression>, <Expression>, <Size Expression>)

Write a byte value to EEPROM memory to a direct address; it uses standard EEPROM processor
registers. If <Address Expression> or <Expression> evaluates to a width greater than byte, a truncation
occurs and a warning is produced. If <Address Expression> is a constant, a bounds check is made
regarding processor's implementation.
The second form specifies the write length (number of bytes); in that case <Expression> is truncated or
expanded to match the specified size.
The third form may be used to specify the size with a constant expression returning the value 1, 2 or 4; in
that case <Expression> is truncated or expanded to match the specified size.

EXCLUDE(<Integer Variable>, <Bit>)

Where:
<Integer Variable> is any integer variable (BYTE to DWORD size).
<Bit> is a bit number constant 0..n applicable to <Integer Variable>.

Purpose:
Reset bit <Bit> from <Integer Variable>. This is equivalent to Delphi's exclude statement that applies to
SETs. PMP applies to any integer variable that is assimilated to a SET.

Document revision: A S T A T E M E N T S - B U I L T - I N P R O C E D U R E S Page 75/101

PIC MICRO PASCAL V1.6 - USER MANUAL

FP_CLR

Purpose:
Initializes floating point flags (FP_FLAGS). These flags are only cleared once at program starting and
never reset until FP_CLR is called by the programmer. With this method, if there is an error in a complex
FP expression, flags may be tested after the whole expression evaluation, and reset before or after.

FREEMEM(<Identifier>, <Size>)

Where:
<Identifier> is a typed pointer variable.
<Size> is the allocated byte count.

Purpose:
Free the dynamic variable pointed to by the given variable. <Identifier> is any pointer variable. <Size>
should be the same size that was given at allocation time.
There is no heavy check for pointer coherency (there is only a check that this is a valid RAM address).
The allocated memory should have been allocated by a call to the NEW or GETMEM standard built-in
procedures.
This procedure is implemented for PIC18 and PIC16 enhanced mid-range only. See also: PMP
dynamic memory allocation (§ 4.20).

GETMEM(<Identifier>, <Size>)

Where:
<Identifier> is a any pointer variable.
<Size> is the requested byte count.

Purpose:
Create a new dynamic variable and initializes a pointer variable to point on it. <Identifier> is any typed
pointer variable. <Size> is the requested size of the allocated memory block. If the heap of free memory
does not have enough space to allocate the block, the ERROR procedure is called and the processor is
halted. The allocated memory should be freed by a call to the FREEMEM standard built-in procedure.
This procedure is implemented for PIC18 and PIC16 enhanced mid-range only. See also: PMP
dynamic memory allocation (§ 4.20).

INCLUDE(<Integer Variable>, <Bit>)

Where:
<Integer Variable> is any integer variable (BYTE to DWORD size).
<Bit> is a bit number constant 0..n applicable to <Integer Variable>.

Purpose:
Set bit <Bit> from <Integer Variable>. This is equivalent to Delphi's include statement that applies to
SETs. PMP applies to any integer variable that is assimilated to a SET.

MOVE(<Source>, <Dest> (, <Size>))
Move one variable to another variable for the optional given size in bytes. If not given, the moved size is
the lowest size of <source> and <destination>. If the given <Size> is greater than <Source> size, an
error is produced. This procedure cannot overlap outside <Source>.

Document revision: A S T A T E M E N T S - B U I L T - I N P R O C E D U R E S Page 76/101

PIC MICRO PASCAL V1.6 - USER MANUAL

NEW(<Identifier>)

Where:
<Identifier> is a typed pointer variable.

Purpose:
Create a new dynamic variable and initializes a pointer variable to point on it. <Identifier> is any typed
pointer variable. The size of the allocated memory block depends of the size of the type pointed by
<Identifier>. If the free memory does not have enough space to allocate the bloc, the ERROR procedure
is called and the processor is halted. The allocated memory should be freed by a call to the DISPOSE or
FREEMEM standard built-in procedures.
This procedure is implemented for PIC18 only and PIC16 enhanced mid-range only. See also: PMP
dynamic memory allocation (§ 4.20).

OPTION(<Expression>)

Where:
<Expression> is any byte expression.

Purpose:
Usually PMP does not have special instructions to manipulate registers; to access to the OPTION
register the OPTION_REG register should be directly assigned.
Unfortunately, some old and / or small devices do not have OPTION_REG register, but a special
instruction OPTION that is a write-only instruction.
The OPTION built-in procedure will automatically map into an OPTION_REG register assignment if such
register exists or into an OPTION instruction otherwise.
As said before, OPTION is write-only, so you cannot read back the value, so it should be saved in a
global variable if you want to manipulate / mask individual bits.

PWM(<Port>, <PinNumber expression>, <Duty expression>)
Or:
PWM(<Identifier>, <Duty expression>)

Where:
<Port> is an existing I/O port (PORTA, …),
<PinNumber expression> is a constant expression that gives a 0..7 range,
<Duty expression> is a byte expression that gives a 0..255 range,
<Identifier> is a boolean variable that maps to an I/O pin.

Purpose:
Set the given I/O pin as an output, then send a stream of interleaved 1 and 0 to the specified I/O pin so
that the output mean voltage value is theoretically proportional to “Duty” (Vdd * Duty / 255), then set the
given I/O pin as an input.
If an RC is wired to the pin, the capacitor will hold the voltage value, so this makes an easy and cheap 8
bits analogical output function. Several PWM statements may be necessary to charge the capacitor,
depending on the RC value.
The theoretical voltage value is never achieved, it depends on the pin and on the device; typical 1 is Vdd-
0.7V and typical 0 is Vss+0.6V, but the linearity should be acceptable, with some bad excursions at min
and max values; experimentation would help…

PWM voltage value: theoretical vs practical at Vdd = 5 VDC

3,76V

5,00V

1,25V

2,51V

4,30V

0,60V

2,46V
1,53V

3,39V

0,0V

1,0V

2,0V

3,0V

4,0V

5,0V

0 64 128 192

Duty value

Theoretical Practical

255

Document revision: A S T A T E M E N T S - B U I L T - I N P R O C E D U R E S Page 77/101

PIC MICRO PASCAL V1.6 - USER MANUAL

READ(<Variable [, <Variable>]*)
Or:
READLN[(<Variable> [, <Variable>]*)]

Where:
<Variable> may be any simple variable of type BYTE, CHAR, SHORTINT, INTEGER, WORD, LONGINT,
LONGWORD, STRING. CHAR variables may be READ individually, they are not treated as BYTE in this
case.

Purpose:
This is the standard Pascal READ and READLN procedures that read variables from the current console
(see ASSIGN).

PMP specificities:
There is no buffer. If a numeric is followed by a space or tabulation character, this one will be lost for the
next READ (see example below).
REAL numbers are not allowed.

Examples:
var
 B: byte; C: char; S: string;
…
// Assuming that incoming characters are '* 123 ABCD’
 readln(C, B, S); // This will set C to '*’, B to 123 and S to ' ABCD'
 // (note that one space before ABCD has been lost)

STR (<Expression> (: Width Expression>), <String Variable>)

Where:
<Expression> may be any expression that may be evaluated by the compiler. REAL numbers are treated
but formatting is limited in the current version, the number of decimals cannot be specified and output is
always in scientific format (like -1.23456E+23).

<Width Expression> is an optional qualifier (defaults to zero); it is any expression that may be evaluated
by the compiler, but result is used as BYTE. If the evaluation of width expression evaluates to a larger
value, a byte truncation warning is issued.

Purpose:
This is the standard Pascal STR procedure that converts an expression to a string with optional width
qualifier.
If <Width Expression> specifies more than the necessary digits needed to represent <Expression>,
spaces are inserted at left to adjust the string to <Width Expression> digits.
If the <String variable> maximum length is less than the number of generated digits, string truncation
occurs. Warning: this truncation is not made as in standard Pascal that truncates the string at right and
keeps the leftmost digits. PMP truncates the string at left, so that the rightmost digits are kept.

Examples:
var
 SX2: string[2]; SX5: string[5];
 W: word; I: integer; B: byte;
…
 B := 3;
 Str(123: B, SX2); // This will set SX2 to '23' regardless to B
 W := $FFFF;
 Str(W, SX5); // This will set SX5 to '65535'
 I := -123;
 Str(I: 5, SX5); // This will set SX5 to '- 123'

Note: For floating point values, formatting is limited in the current version; the number of decimals cannot
be specified and output is always 16 characters wide (or less if specified), in scientific format (like
-1.234567890E+23). It is reserved to debug procedures.

Document revision: A S T A T E M E N T S - B U I L T - I N P R O C E D U R E S Page 78/101

PIC MICRO PASCAL V1.6 - USER MANUAL

SWAP(<Variable>)
For BYTE, CHAR or SHORTINT variables, swaps low and high nibbles. For INTEGER or WORD
variables, swaps low and high bytes. For a LONGINT or LONGWORD variable, swaps low and high
words. Other types are not supported.

TRIS(<Port>, <Mask expression>)

Where:
<Port> is an existing I/O port (PORTA, …),
<Mask expression> is a byte expression that gives a BYTE range.

Purpose:
Usually PMP does not have special instructions to manipulate registers; to access to the I/O direction
registers the TRISx registers should be directly assigned.
Unfortunately, some old and / or small devices do not have TRISx registers, but a special instruction
TRIS that is a write-only instruction.
The TRIS built-in procedure will automatically map into a TRISx register assignment if such register
exists or into a TRIS instruction otherwise.
As said before, TRIS is write-only, so you cannot read back the value, so it should be saved in a global
variable if you want to manipulate / mask individual bits.

WRITE(<Expression Item> [, <Expression Item>]*)
Or:
WRITELN[(<Expression Item> [, <Expression Item>]*)]

<Expression Item> ::= <Expression> (: Width Expression>)

Where:
<Expression> may be any expression that may be evaluated by the compiler. Single CHAR may be used
(they are not converted to BYTE in this case).
<Width Expression> is an optional qualifier (defaults to zero) witch expression may be evaluated by the
compiler, but result is used as BYTE. If the evaluation of width expression evaluates to a larger value, a
byte truncation warning is issued.

Purpose:
This is the standard Pascal WRITE and WRITELN procedures that convert expressions to a string and
outputs it to the current console (see ASSIGN), with optional width qualifiers.

PMP specificities:
For specificities about string formatting, refer to the STR built-in procedure.
At the end WRITELN outputs a pair of CR/LF characters or a simple CR, according to the $EOL
directive.
REAL numbers are treated but as for the STR procedure, formatting is limited in the current version, the
number of decimals cannot be specified and output is always 16 characters wide (or less if specified), in
scientific format (like -1.234567890E+23). If size is specified, the string is truncated from the left
(specifying 12 characters would output -1.234567890).

Examples:
var
 B: byte; C: char
…
 write('This is one:', 1: 3); // This will output ‘This is one: 1’
 B := 3;
 write('This is three:', B); // This will output ‘This is three:3’
 C := '?';
 write('Somebody there', C: 2); // This will output ‘Somebody there ?’
 writeln; // Output a single CR/LF

Document revision: A S T A T E M E N T S - B U I L T - I N P R O C E D U R E S Page 79/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.17 Branching statements
Finally, PMP supports the following program branch statements:

<Label>:
GOTO <Label>

Where <Label> must begin with a letter followed by zero or any number of letters or digits or underscore
characters.

Forward references are allowed in a PMP program, but all references must be resolved locally by procedure,
function or program's end, or else an error will be issued. A GOTO cannot jump outside of the current
procedure, function or program.

PMP labels have not to be declared before use (not a standard Pascal Label declaration).

PMP labels translate to an internal representation as for any identifier (prefixed with module name and
procedure or function name).

➢ In its current implementation PMP does not check for branch to statements that are in FOR /
WHILE / REPEAT loops, so this would make unpredictable results, especially in a FOR loop since
the loop variable is not initialized:
IF A THEN GOTO Label_A;
FOR I := 1 TO 10 DO
 BEGIN
 // Do Something
 Label_A:
 // Do Something else
 END;

 Well, everybody would say that this is not a good practice (indeed), but PMP will not flag it…

4.18 Code optimization considerations
PMP tries to strongly optimize the generated code.

Since V1.3 PMP does expression and sub-expressions optimizations before generating code so it produces
good code regardless of the complexity or inefficiency of expressions.

Well, in the current real world there are some compromises that may affect the final result, so a minimum
help from the programmer is needed.

General rules:
To avoid overflows, put the wider elements to the leftmost position of an expression.
Parenthesis (complex expressions) may use stacks (temporary variables), so if space is an issue, cut
complex expressions in several ones.
Do not use signed variables if not absolutely necessary. Signed variables handling costs more memory and
MCU cycles.
Do not use floating point variables if not absolutely necessary. Floating point handling costs a lot more
memory and MCU cycles.

PMP goes ahead and the future implementations will be more optimized. This is the most difficult goal in
writing a compiler…

Document revision: A S T A T E M E N T S - C O D E O P T I M I Z A T I O N C O N S I D E R A T I O N S Page 80/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.19 Floating point
4.19.1 Overview
➢ When floating point (FP) has been introduced, it was for PIC18+ processors only.
➢ Now FP is for PIC16 also!
➢ Using FP on smaller processors will produce compilation errors.

PMP FP uses routines based on a port of the excellent FP package called PicFloat (from Mike Gore) that
may be found on the net. Routines had been rewritten to be adapted to the PMP internal logic.

The internal FP format is an optimized 6 bytes format, giving a pretty 32 bits plus sign mantissa, the full
format is:

 <SIGN><EXP><MANTISSA> ::= [7..0] [7..0] [31..0]
►9.4 (9 to 10) digits accuracy with an exponent up to +/- 2^127 (+/-1.7E38).

compared to the 23 bits plus sign of the SINGLE 4 bytes IEEE format:

 <SIGN><EXP><MANTISSA> ::= [31] [30..23] [22..0]
►7.1 (7 to 8) digits accuracy with an exponent up to +/- 2^127 (+/-1.7E38).

During compilation, PMP internally uses a 64 bits DOUBLE format that is converted to the appropriate format
according to generated statements.

The generated code may use a 4 bytes SINGLE format but it systematically converts any format to REAL
format when a call to a FP routine is needed (simple + - * / operators or a call to a FP function).

Assignment of a SINGLE variable with a SINGLE expression or constant does not generate a conversion.

PMP does not have an internal representation for NaN (Not a Number) or infinity.
Overflow is trapped as an error and the maximum value is returned instead of infinity.

4.19.2 Supported FP built-in functions

➢ Note: In all function calls, arguments are always converted to the REAL type before calling the function.

<Angle> represents an angle in radians.

COS(<Angle>):
This function returns the cosine of the angle.

ARCCOS(<X>):
This function returns the inverse cosine of <X>.

SIN(<Angle>):
This function returns the sine of the angle.

ARCSIN(<X>):
This function returns the inverse sine of <X>.

TAN(<Angle>)
This function returns the tangent of the angle. Tan(X) = Sin(X) / Cos(X).

ARCTAN(<X>):
This function returns the inverse tangent of <X>.

EXP(<X>)
This function returns the value of e raised to the power of <X> (eX), where e is the base of the natural
logarithms.

Document revision: A S T A T E M E N T S - F L O A T I N G P O I N T Page 81/101

PIC MICRO PASCAL V1.6 - USER MANUAL

LN(<X>)
This function returns the natural logarithm (Ln(e) = 1) of <X>.

ROUND(<X>)
This function rounds a REAL or SINGLE value to an integer-type value. ROUND returns a LONGINT value
that is the value of <X> rounded to the nearest whole number. If <X> is exactly halfway between two whole
numbers, the result is always the even number. This method of rounding is often called "Banker's Rounding".
If the rounded value of <X> is not within the LONGINT range, the function returns the maximum value
(according to the sign) and a run-time FP integer overflow error flag is set (FP_IOV), which can be tested by
the programmer.

SQRT(<X>)
This function returns the square root of <X>. If <X> <= 0, a runtime FP invalid operation error flag is set
(FP_IOP), which can be tested by the programmer.

TRUNC(<X>)
This function truncates a real REAL or SINGLE value to an integer-type value. TRUNC returns a LONGINT
value that is the value of <X> rounded toward zero. If the truncated value of <X> is not within the LONGINT
range, the function returns the maximum value (according to the sign) and a run-time FP integer overflow
error flag is set (FP_IOV), which can be tested by the programmer.

SQR(<X>)
This function returns the square of <X>. As an exception to the general rule, since SQR(X) is implemented as
X*X, the argument may be of any type, integer or FP, and the result is in the same type as the argument
(Except for FP expressions, where the result is always in the REAL type). Warning: overflow may occur since
<X> is not converted.

POW(<X1>, <X2>)
This function returns <X1> raised to <X2> (X1X2). Implemented as Y = eX1.Ln(X2). If both <X1> and <X2> are
zero, or if <X2> is less or equal to zero, a run-time FP invalid operation error flag is set (FP_IOP), which can
be tested by the programmer.

4.19.3 FP flags
FP operations may set or test several bits that can be accessed by the programmer as pseudo-booleans:

FP_OVR Floating point overflow; may be set on any FP operation (also if divide by zero). Read only.
FP_UND Floating point underflow; may be set on any FP operation. Read only.
FP_IOP Invalid floating point operation; may be set on any FP operation if argument does not match

the function (e.g.: SQRT(-1)). Read only.

➢ When FP_OVR is set, the offending function returns the REAL maximum value (≈6.8E38), according to
the sign.

➢ When FP_UND is set, the offending function returns the REAL minimum value (≈1.1755E-38), according
to the sign.

Document revision: A S T A T E M E N T S - F L O A T I N G P O I N T Page 82/101

PIC MICRO PASCAL V1.6 - USER MANUAL

4.20 Dynamic Memory Allocation
➢ This feature is implemented for PIC18 and PIC16 enhanced mid-range only.

4.20.1 Overview
PMP implements standard NEW, DISPOSE, GETMEM, FREEMEM built-in procedures.

If one of these procedures are used, PMP generates dynamic memory allocation structures and procedures.
The heap is build from all the available memory blocks that:

• Is not "shared" or "access ram".
• Is not RESERVED.
• Is not BAD (as declared by MPLAB files),
• Has not been used in the program.
• Has a minimum size of 6 bytes.

➢ Heap management is not re-entrant so it should not be called within an interrupt routine.

4.20.2 How it works
When a NEW or GETMEM statement is invoked, the allocation routine searches a block in this order of
priorities:

✔ A block that matches exactly the required size.
✔ A block that is greater, in this case it will be split as required (see below).
✔ After heap defragmentation, the two first steps are tried again; if they don't match again, the ERROR

procedure is called and the processor is stopped in an infinite loop.

When DISPOSE or FREEMEM is invoked, the given block is simply linked into the heap; it becomes the first
free block.

To minimize the heap fragmentation, the memory blocks are allocated by chunks with a granularity of 4
bytes. The actual block size is the required size plus the memory needed for maintaining a “block size” at the
beginning of the block (one byte for PIC16, two bytes for PIC18). If a block is greater than the required size
rounded to the next 4 bytes boundary, it is split and the remaining bytes return to the heap.

➢ Heap is initialized once at main program start-up.

Heap block memory format:
• <Block size> (one or two bytes)
• Next block address (two bytes)
• n bytes of free memory.

<Block size> is maintained in memory; the pointer returned by NEW or GETMEM is the address next to
<Block size>. When the memory block is freed by DISPOSE or FREEMEM, the given pointer is decremented
to skip back to <Block Size> and a consistency check is made between the size argument and the current
block size; an error is generated if they don't match.

4.20.3 Error treatment
➢ Memory management may generate unrecoverable errors.

If such an error occurs, the ERROR procedure is called if any has been assigned, then the processor freezes
(doing an infinite loop). The interrupts are not disabled and WDT can restart the processor.

Error codes:
$31: Heap overflow: A block with the required size cannot be allocated.
$32: Invalid heap block: An attempt to DISPOSE or FREEMEM a block that does not point to a valid RAM

address, or the <Block size> field of the block does not match.

Document revision: A S T A T E M E N T S - D Y N A M I C M E M O R Y A L L O C A T I O N Page 83/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5 Libraries

5.1 Overview
PMP libraries are simple free open source software, subjected to the general policy of the PMP license.

Note: A library that is sent to be included in the PMP package becomes a de facto free open source software,
free of rights of any nature. The name of the author and his comments are retained unless they go against
the rules of PMP or its licensing policy. The content of the library is subject to change, to match PMP's coding
rules and future features.

Even if quite limited for now, some of these libraries may need additional information that will be found here.

To be completed...

5.2 Global usage rules
Most of PMP's library units may be parametrized through conditional compilation.

The PMP's ability to pass a $DEFINED symbol from the global project data or from the main program has
been used.

If a $DEFINED symbol is not declared, the unit may use a default value.

This is very efficient, because the code is optimized at compile time, rather than passing a lot of parameters
to initialization routines and generating all the code for all the cases.

A unit that strongly uses this method is the LCD unit (see below).

Document revision: A L I B R A R I E S - G L O B A L U S A G E R U L E S Page 84/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5.3 The LCD unit
The LCD unit deals with a HD44780-based compatible LCD display.

Demo project: .\Examples\Test_LCD\Test_LCD.PMP

5.3.1 Supported features
• 4 bits or 8 bits modes.
• 1, 2 or 4 lines (4 lines never tested).
• Any width.
• Character generator functions.
• The character output procedure may be hooked to the standard WRITE/WRITELN procedures by the

ASSIGN built-in procedure; it manages CR/LF.

5.3.2 Pin assignments
4 bits mode defaults:

• 0:3 Data bus (low nibble).
• 4 RS pin: Register Select.
• 5 E pin: Enable.
• 6 WR pin: Write Mode (if used, see below).
• 7 Unused.

For 8 bits mode, there's the same assignment for control lines.

Although the PORT assignment may be parametrized, the default pin number assignments cannot be
changed via conditional compilation yet; if needed the unit have to be edited.

All control lines must be on the same PORT, all data bits must be on the same port, using the high or the low
nibble in 4 bits mode.

5.3.3 Conditional compilation

Parameter / feature $DEFINE Identifiers Default
Width LCD_WIDTH_8,

LCD_WIDTH_16,
LCD_WIDTH_20,
LCD_WIDTH_32;

16 characters.

Number of lines LCD_LINES_1,
LCD_LINES_2,
LCD_LINES_4;

2 lines.

Data bus width LCD_4BITS,
LCD_8BITS;

4 bits.

4 bits bus position LCD_4BITS_UPPER; Lower bits.

Read mode is possible (WR not
permanently grounded)

LCD_READ; No. Forced as no if PIC10/PIC12.

Use of character generator routine LCD_GEN; No.

If LCD_GEN is defined, use of 5x10
characters

LCD_GEN_10; 5x8.

Control port to use LCD_CNTRL_PORTA,
LCD_CNTRL_PORTB,
LCD_CNTRL_PORTC,
LCD_CNTRL_PORTD;

GPIO for PIC10/12 and PORTB
otherwise.

Data port to use LCD_DATA_PORTA,
LCD_DATA_PORTB,
LCD_DATA_PORTC,
LCD_DATA_PORTD;

GPIO for PIC10/12, otherwise it is
PORTB if 4 bits mode, PORTC
otherwise.

Document revision: A L I B R A R I E S - T H E L C D U N I T Page 85/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5.3.4 Constants

Name Used as parameter of Comments
LCD_Width Nb of characters in

width, according to the
conditional compilation
symbols.

CURSOR_MOVE_LEFT = $00; LCD_CursorMoveMode Cursor or text will move
to the left at each
character write.

CURSOR_MOVE_RIGHT = $02; Cursor or text will move
to the right at each
character write
(default).

CURSOR_MOVE_TEXT = $01; Text scrolling: the cursor
is fixed and the text
scrolls.

DISPLAY_TEXT_ON = $04; LCD_DisplayMode Show the text (default).
DISPLAY_TEXT_OFF = $00; Hide the text.

DISPLAY_CURSOR_ON = $02; Show the cursor.

DISPLAY_CURSOR_OFF = $00; Hide the cursor
(default).

DISPLAY_CURSOR_FIXED = $00; Fixed cursor.

DISPLAY_CURSOR_BLINK = $01; Blinking cursor
(default).

SHIFT_TEXT = $08; LCD_ShiftMode Fixed cursor, text is
scrolling

SHIFT_LEFT = $04; Shift to the left

SHIFT_RIGHT = $00; Shift to the right
(default)

5.3.5 Types
LCD_String Defines a string which size is equal to the display width.

Document revision: A L I B R A R I E S - T H E L C D U N I T Page 86/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5.3.6 Interface

procedure LCD_Init; Initialize the LCD system: must me called once before any
other operation.

procedure LCD_GotoXY(XPos, YPos: byte); Cursor addressing (first line / column = 1); does not affect
cursor on/off.

procedure LCD_Write_Char(Ch: char); Write a character to the LCD with line/column
management (CR & LF managed too); may be hooked to
WRITE/WRITELN, see below.

procedure LCD_Clear; Clear the display and set the cursor to the home position
(1, 1).

function LCD_X: byte; Return the current X (column) position.

function LCD_Y: byte; Return the current Y (line) position.

procedure LCD_Home; Set the cursor to the home position (1, 1); does not affect
text.

procedure LCD_WriteString(const romable St:
LCD_String);

Write a string to the display. The string may be a string
literal (ROM) or a string variable (RAM). Not available for
PIC10/PIC12.

procedure LCD_CursorMoveMode(Mode: byte); Set the cursor move mode (with a combination of the
above constants).

procedure LCD_Cursor_On; Show text and cursor; it is a shortcut for:
LCD_DisplayMode(DISPLAY_TEXT_ON +
DISPLAY_CURSOR_ON + DISPLAY_CURSOR_BLINK);

procedure LCD_Cursor_Off; Show the text but hide the cursor; it is a shortcut for:
LCD_DisplayMode(DISPLAY_TEXT_ON);

procedure LCD_DisplayMode(Mode: byte); Set the display move mode (with a combination of the
above constants).

procedure LCD_ShiftMode(Mode: byte); Set the display shift mode (with a combination of the
above constants).

procedure LCD_User_Char_5x8(CharCode,
Line1, Line2, Line3, Line4, Line5, Line6, Line7,
Line8: byte);

Define the CG layout for the given character code, if we
are using a 5x8 display.

procedure LCD_User_Char_5x10(CharCode,
Line1, Line2, Line3, Line4, Line5, Line6, Line7,
Line8, Line9, Line10, Line11: byte);

Defines the CG layout for the given character code, if we
are using a 5x10 display.

Document revision: A L I B R A R I E S - T H E L C D U N I T Page 87/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5.4 The KS107_108 (former GLCD) unit
The KS107_108 unit interfaces a KS107/KS108 type of graphics LCD (128x64).

Demo project: .\Examples\GLCD\LCDGR.PMP

5.4.1 Supported features
• Pixel plot / get state.
• Line, rectangle and circle with outline or fill mode.
• 5x7 and 8x8 fonts.

5.4.2 Conditional compilation

Parameter / feature $DEFINE Identifiers Default
Port to be used for GLCD control, where x = A..E. GLCD_CTRL_PORTx PORTB

Port to be used for GLCD data, where x = A..E. GLCD_DATA_PORTx PORTD

5.4.3 Pin assignments
Control port defaults:

• 0 CS2: Second display select.
• 1 CS1: First display select.
• 2 RS: Register select.
• 3 WR: Read/Write select.
• 4 E: Enable.
• 5 RST: Reset

Note: bits 6 and 7 are unused and left as inputs.

5.4.4 Constants
Name Comments
GLCD_FONT_WIDTH Wrapper to the selected font width, currently 5 or 8.

GLCD_FONT_HEIGHT Wrapper to the selected font height, currently 7 or 8.

GLCD_FONT_SPACING Wrapper to the selected font spacing, currently 1.

GLCD_FONT_MIN_CHAR Wrapper to the selected font first implemented character code.

GLCD_FONT_MAX_CHAR Wrapper to the selected font last implemented character code.

GLCD_CS1 Chip #1 identifier for low level functions.

GLCD_CS2 Chip #2 identifier for low level functions.

GLCD_SET_TOP Low level command: Specify the first RAM line at the top (see
GLCD_Cmd procedure).

GLCD_SET_COLUMN Low level command: Set the column address (see
GLCD_Cmd procedure).

GLCD_SET_PAGE Low level command: Set the page address (see GLCD_Cmd
procedure).

GLCD_ON Low level command: Turn the display on (see GLCD_Cmd
procedure).

GLCD_OFF Low level command: Turn the display off (see GLCD_Cmd
procedure).

Document revision: A L I B R A R I E S - T H E K S 1 0 7 _ 1 0 8 (F O R M E R G L C D) U N I T Page 88/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5.4.5 Types
tGLCD_InitMode = (glcdOFF, glcdON); { 0 (False) = LCD left off after init, 1 (True) = LCD left on

after init }
tGLCD_FillMode = (glcdEMPTY, glcdFILLED); { 0 (False) = fill empty (black), 1 (True) = filled (WHITE) }
tGLCD_PlotMode = (glcdHIDE, glcdSHOW); { 0 (False) = hide pixel (black), 1 (True) = show pixel

(WHITE) }
tGLCD_RegisterMode = (glcdINST, glcdDATA); { 0 (False) = Instruction register, 1 (True) = data register }
tGLCD_RW = (glcdWRITE, glcdREAD); { 0 (False) = write mode, 1 (True) = read mode }

tGLCD_String { Widest string usable for GLCD Text }

5.4.6 Variables
None.

5.4.7 Interface
Low level functions:
procedure GLCD_Init(Mode: tGLCD_InitMode); Initialize the GLCD system; Mode permits to let the

display ON or OFF after initialization.

procedure GLCD_Cmd(Cmd: byte); Low level procedure: Send a simple command to both
chips.
The Cmd parameter is one of the low level command
values added with an optional data value:
GLCD_SET_TOP: Specify the first RAM line at the
top 0..63
GLCD_SET_COLUMN: Set the column address 0..63
GLCD_SET_PAGE: Set the page address 0..7
GLCD_ON: Turn the display on (no other data)
GLCD_OFF: Turn the display off (no other data)

procedure GLCD_WriteByte(
Mode: tGLCD_RegisterMode;
Chips, Data: byte);

Low level procedure: write a raw byte to the designed
register on the designed chip(s).
The Chips parameter may be a combination of
GLCD_CS1 and GLCD_CS2.

function GLCD_ReadByte(Mode:
tGLCD_RegisterMode;
Chip: byte): byte;

Low level procedure: read a raw byte from the designed
register on the designed chip.
The Chips parameter may be GLCD_CS1 or GLCD_CS2.

High level functions:
procedure FillScreen(State: tGLCD_FillMode); Fill the screen black or white.

procedure PlotPixel(X, Y: byte;
State: tGLCD_PlotMode);

Plot a pixel, black or white.

function GetPixel(X, Y: byte): boolean; Get a pixel state, black or white.

procedure PlotData(X, Y, Data: byte;
State: tGLCD_PlotMode);

Plot a whole data byte, black or white.

procedure Line(X1, Y1, X2, Y2: byte;
State: tGLCD_PlotMode);

Draw a line, black or white.

procedure Rectangle(X1, Y1, X2, Y2: byte;
FILL: tGLCD_FillMode;
State: tGLCD_PlotMode);

Draw a rectangle, filled or outlined, black or white.

procedure Circle(X, Y, Radius: byte;
FILL: tGLCD_FillMode;
State: tGLCD_PlotMode);

Draw a circle, filled or outlined, black or white.

procedure Text(X, Y: byte;
const St: tGLCD_String;
State: tGLCD_PlotMode);

Draw a text, black or white.

Document revision: A L I B R A R I E S - T H E K S 1 0 7 _ 1 0 8 (F O R M E R G L C D) U N I T Page 89/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5.5 The SERIAL unit
The SERIAL unit interfaces simple HW asynchronous interface (USART), without interrupts.

It does not support a second HW port.

Demo project: None.

5.5.1 Supported features
• Single character I/O.
• The character input procedure may be hooked to the standard READ/READLN procedures by the

ASSIGN built-in procedure.
• The character output procedure may be hooked to the standard WRITE/WRITELN procedures by the

ASSIGN built-in procedure..

5.5.2 Conditional compilation

Parameter / feature $DEFINE Identifiers Default
Generate the serial character input routine USE_SERIALPORT_INPUT No.

Generate the serial character output routine USE_SERIALPORT_OUTPUT No.

Generate the serial string output routine USE_SERIALPORT_OUTPUTSTRING No. If yes, the serial
output character
routine is also
generated.

5.5.3 Constants
None.

5.5.4 Types
SerialString Defines a string which may be used as SerialPort_OutputString parameter.

5.5.5 Variables
Name Size Comments
InErrorCode byte Holds the last error codes if the serial input routine is used.

5.5.6 Interface
function SerialPort_InputReady: boolean; Returns true if a character has been received on the serial

port.

function SerialPort_Input: byte; Return the received byte from the serial port.
Return the receive error bits 1 (overrun) & 2 (framing)
errors in the InErrorCode global variable.
Warning: It waits if there is no char ready.

procedure SerialPort_Output(Ch: byte); Write a character to the LCD with line/column
management (CR & LF managed too); may be hooked to
WRITE/WRITELN, see below.

procedure SerialPort_OutputString(const
romable S: SerialString);

Write a string to the serial port. The string may be a string
literal (ROM) or a string variable (RAM).

Document revision: A L I B R A R I E S - T H E S E R I A L U N I T Page 90/101

PIC MICRO PASCAL V1.6 - USER MANUAL

5.6 The A2D unit
The A2D unit is a wrapper to the Analog To Digital features.

It does not support interrupt-based acquisition.

Demo project: None.

5.6.1 Supported features
• Full initialization of the A/D system.
• 8 or 10 bits formats.
• Acquisition delay setting.

5.6.2 Conditional compilation
None. Any A2D mode may be adjusted at run time.

5.6.3 Constants
None.

5.6.4 Types
tA2D_Channels Defines the format of the A/D channels mask (BYTE or WORD).

The channels mask maps directly to ANSEL/ANSELH or equivalent
registers or to ADCON1.PCFG for PIC18.

tA2D_Mode = (adm8bits, adm10bits); Defines an acquisition result format, 8 or 10 bits. The result of the
acquisition is always right justified in a byte (8 bits) or a word (10
bits).

tA2D_ACQT Defines the acquisition time possibilities. For PIC18 it maps the
TAD code, for others it is the nb of microseconds to wait after a
channel change before to start the conversion (BYTE).
For PIC18, they are in the form adtTAD_n where n is the nb of
required TAD. The type may vary according the processor's
possibilities.

tA2D_Clock Defines the A/D clock possibilities. They may be of the form
adcFOSCn where n is the Fosc divider, or adcFrc for RC mode.

tA2D_Vref_Mode Defines the Vref mode possibilities. They may be of the form
advPmMm, whre Pm is the Vref+ mode and Mm is the Vref- mode.
Common mode is advVddVss, or advVdd for the simplest devices.

5.6.5 Variables
None.

5.6.6 Interface
A2D_Init(A2D_Channels: tA2D_Channels;
 A2D_Acqt: tA2D_ACQT;
 A2D_Clock: tA2D_Clock;
 A2D_Mode: tA2D_Mode;
 A2D_Vref_Mode: tA2D_Vref_Mode);

Initialize the A2D system and turns on the A/D converter
(ADON).

function A2D_Get(Channel: byte): word; Perform an acquisition and conversion and return the result,
right justified. The return format is always WORD,
regardless of the initialized format (8 or 10 bits). If 8 bits is
used, the result may be casted by the LO() pseudo function.

Document revision: A L I B R A R I E S - T H E A 2 D U N I T Page 91/101

PIC MICRO PASCAL V1.6 - USER MANUAL

6 Compiler messages

6.1 Error messages
During compilation, PMP may produce error messages; these messages indicate where the error occurs.
PMP tries to continue the compilation after errors and may flag other errors, in some circumstances errors
are induced by the previous ones.

List of error messages:

Message Additional comment
User error: <info> Error by $UERROR directive
Illegal command line: <info>
File create or write error: <info>
Undefined identifier: <info>
Duplicated identifier: <info>
Type mismatch: <info> The requested statement cannot be applied to the given identifier because of it’s format

or type.
Not implemented: <info> This functionality is not yet implemented in the current version of PMP.
Unable to allocate unbanked ram area for
variable: <info>

PMP needs unbanked variables for it’s internal use. In this case, there is not enough
free unbanked memory; try to simplify your code.

Unable to allocate ram area for variable: <info> There is not enough free RAM memory to allocate the variable.
Unable to allocate EEPROM area for variable:
<info>

There is not enough free EEPROM memory to allocate the variable.

Out of processor ram space: <info>
Unresolved forward label: <info>
Unresolved forward reference: <info>
Divide by zero
Illegal string operation The given operator does not apply with strings.
Index out of bounds
Bit number out of bounds The bit number does not exist for the given variable.
Constant out of bounds
Syntax error in include file: <info> Bad MPAsm™ include file.
File not found: <info>
Bad __BADRAM in include file: <info> Bad MPAsm™ include file.
Bad delay value: µs This duration cannot be generated in µs.
Exit not allowed here
Break not allowed here
Continue not allowed here
Interrupt procedure cannot be called
Range mismatch
Declaration differs from previous one: <info>
Interrupt procedure cannot have parameters
Illegal function return type
Illegal type declaration
SFR declaration may be used only for one
variable

Declare SFRs one by one.

Illegal type
Array too large Dimensions exceed the PMP maximum values.
Only one variable can be declared based
absolute

Declare absolute variables one by one.

Record not allowed A record is not allowed here.
Initialized EEPROM records not allowed An EEPROM record cannot have initial values.
CONFIG syntax error
CONFIG cannot be defined here
Processor cannot be redefined at this point
Pointers cannot be redefined at this point
This directive is not allowed in units
Illegal processor frequency
Illegal variables start address
Illegal variables top address
Illegal EEPROM start address
Illegal EEPROM top address
Out of processor EEPROM space: <info>
Bad identifier
Illegal directive
Unterminated conditional compilation block
<info> expected <info> is what was expected here.
Interrupt procedure cannot be declared in
interface section

Document revision: A C O M P I L E R M E S S A G E S - E R R O R M E S S A G E S Page 92/101

PIC MICRO PASCAL V1.6 - USER MANUAL
Message Additional comment
External procedure / function cannot be
declared in interface section
Forward procedure / function cannot be
declared in interface section
Unit not compiled: <info> An unit declared in the uses section cannot be compiled.
Processor type mismatch: <info>
Processor frequency mismatch: <info>
Processor should be defined before
Frequency should be defined before
Illegal string relation
Unit circular reference: <info>
File circular reference: <info>
Impossible baud rate at current processor
speed
Internal error THIS IS A PMP COMPILER BLOW’UP: PLEASE REPORT ERROR TO THE AUTHOR.
This function is not allowed here (reserved to
$IF conditional block)
Cannot assign to constant
Not implemented for this processor
This device has no EEPROM area Attempt to switch variables to EEPROM area or to use EEREAD or EEWRITE on a

device that has no EEPROM.
Cannot redefine a reserved word
Program / unit name mismatches file name For PMP versions >= 1.1, program and unit names must match the file name.
Internal boolean stack overflow; expression is
too complex

PMP uses a Boolean stack that is limited to one byte so this permits only 7 levels of
parenthesis (explicit or implicit, one operator uses one level).

This IDLOC has no defined value The referred IDLOC has not been defined before this point of code.
Illegal I/O channel The I/O channel given in an ASSIGN statement shoud be INPUT, OUTPUT or ERROR

only.
Illegal I/O channel assignment: expecting
procedure(char), function:char or NIL

The given procedure for an ASSIGN(output, <proc>) or ASSIGN(error, <proc>) should
have only one byte or char parameter .
The given function for an ASSIGN(input, <func>) should have no parameter and a
result type of CHAR or BYTE.
Else an assignment of nil is expected.

Cannot redefine a globally defined symbol An attempt is made to redefine ($DEFINE or $UNDEF) a conditional compilation
symbol that is global (defined in project's properties or in the main program if in a unit).

MODx pseudo variable cannot be used here
due to lack of previous DIV or optimization
Reserved word; identifier expected A reserved word is used where an identifier is expected.

Document revision: A C O M P I L E R M E S S A G E S - E R R O R M E S S A G E S Page 93/101

PIC MICRO PASCAL V1.6 - USER MANUAL

6.2 Warning messages
During compilation, PMP may produce warning messages; these messages indicate where the warning
occurs. A warning is not an error; it indicates that PMP has flagged a condition that may be optimized by the
programmer.
Warnings may be enabled or disabled globally or by number (see compiler directives). The warning number
is issued in the message.

List of warning messages:

Message Additional comment
0 User message Warning by $UWARNING directive
1 Boolean truncation Boolean will be set with the 1 LSB only.
2 Byte truncation Current size is greater than byte, only the 8 LSB will be stored.
3 Integer truncation Current size is greater than integer, only the 16 LSB will be stored.
4 Word truncation Current size is greater than word, only the 16 LSB will be stored.
5 Obsolete
6 String truncation Destination max length is lower than the current size; only the

destination max length characters will be stored.
7 Cannot generate accurate delay with this processor

frequency
8 Cannot achieve 1 µs delay with this processor frequency
9 Cannot achieve 10 µs delay with this processor frequency

10 Boolean occupies one bit so sizeof is not relevant Sizeof is meaningless for Booleans (sizeof is the number of bytes).
11 Duplicated bit The bit appears more than once in the list.
12 Converted to byte Expression has been converted to BYTE wide value.
13 µs delay is limited
14 Case items overlap The given range overlaps another range.
15 Implemented as array of byte Constant Boolean arrays are implemented as byte arrays (one byte

per element).
16 Ram top address change not allowed here; ignored
17 EEPROM top address change not allowed here; ignored
18 Result is always zero The constant expression optimizer as determined that this

expression is always 0.
19 EEPROM variables cannot be local variables; ignored
20 EEPROM variables cannot be arrays; ignored
21 EEPROM variables cannot be absolute; ignored
22 Unit not accurate, should be recompiled obsolete
23 Internal routine call from ISR; possible reentrance conflict The code uses PMP internal subroutine call that may be used in the

main program; it may imply an unpredictable behavior.
24 Inaccurate baud rate The requested value cannot match exactly due to processor

limitations with the current frequency.
25 Small string buffer allocated: n bytes Due to memory limitations, string buffer has been limited to n bytes.
26 The selected processor has a fixed frequency; ignored
27 Fixed frequency; the project's default frequency has been

overridden
28 Deprecated or not applicable directive; ignored
29 SFR is read only Attempt to write to an SFR that is tagged as read only in MPLAB

files.
30 SFR bit is read only Attempt to write to an SFR bit that is tagged as read only in MPLAB

files.
31 SFR bit is write only Attempt to read an SFR bit that is tagged as write only in MPLAB

files; result value is meaningless.
32 This SFR bit is undefined This identifier is not valid bit name for the related SFR.
33 This bit is undefined for this SFR This identifier is not a bit name of the related SFR.
34 Variable xxx is defined but never used The given variable or parameter had been declared but never used

in the program.
35 CHAR, BYTE or WORD cannot be negative; sub-

expression is always false
36 Low heap size The remaining free memory allocated to heap gives less than 64

bytes.
37 SHORTINT truncation Current size is greater than SHORTINT, only the 8 LSB will be

stored.

Document revision: A C O M P I L E R M E S S A G E S - W A R N I N G M E S S A G E S Page 94/101

PIC MICRO PASCAL V1.6 - USER MANUAL

7 PMP development issues

7.1 Known limitations
PMP was primarily designed for small PIC devices, and I have not checked it for all devices, so some
problems may be encountered. Feel free to report any problem that will be fixed in future versions.

PMP currently uses the Microchip MPAsm™ and MPLink™ functionalities; it generates relocatable .asm code,
with one section per procedure, function or internal subroutine, so the linker should fit all the code in
available processor code pages. Code and identifier names limitations are MPAsm™ and MPLink™ limitations
(for example the incredible 32 characters truncation for identifiers).

The processors.cfg file may help to customize some specific processors features.

Pointers and records are not yet fully supported. PMP supports only a subset of the standard Pascal
features.

7.2 To do list
(Not in priority order) – Feel free to comment!

1. Optimize RAM usage for procedures and functions arguments or local variables.
2. Full implementation of records (more accepted types, nesting ...).
3. Implement dot notation for specifying external unit symbols. In progress.
4. Build a version that integrates in Microchip IDE (they do not seem to be very happy to give

specifications). In progress but in standby state: I had some good contacts with Microchip support, butIn progress but in standby state: I had some good contacts with Microchip support, but
for now it is not enough...for now it is not enough...

5. Continue to tune-up the expression optimizer; there is always something to do…
6. Inline procedures and functions.
7. Procedure and function overloading?
8. Add a directive to optionally activate the strong checking of types as Pascal does. PMP is C-Like on this

(what a shame!). In progress. NEW! Partially done since V1.4.10NEW! Partially done since V1.4.10.
9. Evaluate GPUTILS support. In progress. NEW! Alpha support introduced in V1.4.7NEW! Alpha support introduced in V1.4.7.
10. Evaluate using a optional stack for parameters passing and local variables for FSR-aware processors;

PMP does not use any stack currently. This is memory consuming but really faster than using a stack.
11. And more…

7.3 Not to do list
1. PMP will never (well, who knows?) include an internal assembler, linker or simulator. I feel that MPLAB®

suite is a great product (and free), so presently I don't want to spend time to make a product that will be
less efficient, for sure.

2. OO programming (objects, classes ...). I think that OO programming complexity and the implied memory
management is not a good idea for small micro controllers. Let's stay basic! (way of speaking, naturally!)

7.4 Limited support
PMP has its own Internet site: www.pmpcomp.fr; suggestions and bug reports may be posted on the forum or
sent by email to: Philippe Paternotte philippe.paternotte@pmpcomp.fr.

7.5 About the author
My name is Philippe Paternotte, I was born in 1958 and I am french, living near Paris (feel free to report
language errors).
I'm a Senior Software Engineer specialized in Factory Computing and more generally speaking in Factory
Automation.
I'm a Pascal and Assembler programmer since the ol' 80's, author of many >100K lines applications and
some >200K ones.
I'm using PICs since 2000.
I love fishing, Metallica and good wines.

Document revision: A P M P D E V E L O P M E N T I S S U E S - A B O U T T H E A U T H O R Page 95/101

mailto:philippe.paternotte@pmpcomp.fr
http://www.pmpcomp.fr/

PIC MICRO PASCAL V1.6 - USER MANUAL

7.6 Development tools and contributions
At the beginning PMP was written in Delphi 6.0, then the code has been translated to Delphi 2006.

It strongly uses classes and some JEDI Visual Components Library: http://jvcl.sourceforge.net/ or
http://homepages.borland.com/jedi/jvcl.

Main lexical parser engine was built with a subset of TP Lex: http://www.musikwissenschaft.uni-
mainz.de/~ag/tply.

PMP IDE in the windows version is build around the SynEdit package: http://synedit.sourceforge.net.

Some optimization techniques were found on the PIC mine of code web site:
http://www.piclist.com/techref/microchip/routines.htm.

Floating Point routines are adapted from the PicFloat libraries from Myke Gore.

This documentation is written with Sun's Open Office 3.2.

7.7 Revision history
V1.6.0 - 2011-05-31 PPA:

Fixed: Always read volatile 16 variables LSB first and write them MSB first to manage PIC18 TMRx 16 bits mode.
Fixed: Unexpected syntax error when an argument of WRITE std procedure is a function call with parameters and with a char or
string result type.
Added: In Extended Syntax mode, an optional BY clause to the FOR statement to specify the loop variable increment
(MODULA/OBERON-like syntax).
Added: In Extended Syntax mode, an optional ELSIF clause to the IF statement (MODULA/OBERON-like syntax). Also
added $ELSIF as an alias of $ELSEIF that stays for compatibility.
Added: In Extended Syntax mode, a "LOOP ... END" block equivalent to a "REPEAT ... UNTIL FALSE;" block
(MODULA/OBERON-like syntax).
Added: In Extended Syntax mode, a "RETURN <Expression>" statement for functions that generates an optimized
"RESULT := <Expression>; EXIT;" block.
Added: A "FOR <Loop Variable> IN <Enumerable type or variable> DO <Block>" iterator construction (now standard in
DELPHI/FPC).
Fixed: Unexpected "undefined forward reference" error on a non-forward LABEL, due to an early modification side effect.
Changed: For PIC18, the default procedure interrupt level is now HIGH.
Added: For PIC18, a new attribute for interrupt procedures: FAST may be used to optimize interrupts when there's only
one interrupt level. FAST mode is the default when there's only one interrupt procedure.
Fixed: With $INTERRUPTS UNIQUE the interrupt vector did not be generated if the interrupt procedure was in a unit.
Fixed: Bad generated code for STR() routine for bytes; bad conversion of some numbers; PIC18 processors.
Added: UPCASE built-in function.
Fixed: Bad generated code for MOVE procedure if the source parameter is a ROM identifier; all processors.
Fixed: Bad generated code for a by-value parameter if the passed value is in ROM (initialized ROM arrays); all processors.
Fixed: Bad dependency check between units when a unit is added to a uses list, avoiding rebuild in some circumstances and
generating linker errors.
Fixed: Unexpected undefined symbol with local variables with a procedure/composite composite name larger than 32 characters
(failure of the MPASM limit workaround).
Added: Support of ROM array parameter passing (CONST ROMABLE, see the new manual).
Fixed: Various formatting problems in ASM blocks.
Fixed: Bad side effect on STR() built-in procedure that generated unexpected errors.
Fixed: Bad dependency check that produced unnecessary unit rebuilds.
Changed: Symbols table management / rebuild has been optimized so that the compiler is a bit faster.
Fixed: In an ASM block double quoted strings was altered due to the Pascal parser that does not recognize them as strings.
Fixed: In an ASM block assembler hex format nnH was altered due to the Pascal parser that does not recognize them as hex
numbers.
Updated: processors.cfg to include 16F630 & 16F676 specifics.
Fixed: Bad error message position in some circumstances; PIC16ENH & PIC18 processors.
Fixed: FP divide code generation was broken due to a bad optimization; all processors.

Document revision: A P M P D E V E L O P M E N T I S S U E S - R E V I S I O N H I S T O R Y Page 96/101

http://www.piclist.com/techref/microchip/routines.htm
http://synedit.sourceforge.net/
http://www.musikwissenschaft.uni-mainz.de/~ag/tply
http://www.musikwissenschaft.uni-mainz.de/~ag/tply
http://homepages.borland.com/jedi/jvcl
http://jvcl.sourceforge.net/

PIC MICRO PASCAL V1.6 - USER MANUAL

V1.5.4 - 2010-12-18 PPA:
Fixed: Side effect of new optimization: Bad generated code for $B- AND / OR expressions; all processors.
Fixed: Side effect of new optimization: Possible banking problem in MUL16/DIV16 MUL32/DIV32; all processors.
Fixed: Bad generated code if a function call is not the leftmost operand in an expression in some circumstances; all processors.
Fixed: Bad generated code if a function call is within a FOR loop in some circumstances; all processors.
Fixed: processors.cfg was not complete for PIC16F5? processors, generating bad banking instructions.
Fixed: Side effect of new optimization: bad parameter passing if only one parameter and if it may be evaluated as boolean (0/1); all processors.
Added: A "save as defaults" functionality in the project's options dialog to define options to be used for a new project.
Changed: IDE search/replace function preselects "selected text only" if something is selected in the current window.
Fixed: PIC12F629/675 false stack overflow warnings.
Added: $INIT COMPARATORS to initialize comparator-aware pins to all digital (comparators off) - CMCON in small devices.
Fixed: Removed unnecessary banksel instructions; some small devices (PIC10, PIC12).
Fixed: Compilation error in disabled conditional compilation blocks with a $VECTORS directive for another processor range.
Added: The version values mapping to ID locations option is now functional.

V1.5.3 - 2010-11-16 PPA:
Fixed: A ShortInt was not accepted as a FOR loop variable!!!
Fixed: Bad generated code for mixed signed/unsigned DIV in some circumstances; all processors.
Fixed: Bad generated code for mixed 8/16/32 bits operators - operand promotion in some circumstances; old bug, all processors.
Fixed: Big regression bug; if there's an IF statement that evaluates to FALSE at compile time, the whole current procedure code is not generated after
this point.
Added: After too much side effects / regression errors, the enhancement of the validation system is in progress, with more new automatic checks based
on Delphi code comparisons.

V1.5.2 - 2010-11-14 PPA:
Fixed: If $INTERRUPT UNIQUE, context saving was not always complete; all processors.
Fixed: New ASM enhanced features produces syntax errors with decimal notation .nnnn and d'nnnn'.
Fixed: Bad generated code due to a wrong pseudo stack usage / optimization when using slices. Visible impact on A2D unit; all processors.
Fixed: Bad generated code with CASE jump table in some circumstances. PIC18 processors.
Added: Enumerated types that had only two values are now generated as booleans to save memory.
Added: Now booleans may be declared absolute to another boolean; this applies to "boolean" enumerated variables too.
Fixed: Bad generated code for array read with a byte index in some circumstances; PIC18 processors.
Fixed: Side effect of new optimization: Warning nnn directive was not applied locally.
Fixed: Side effect of new optimization: Defining a String constant by concatenation was rejected.
Fixed: IDE file was not always focused after loading.

V1.5.1 - 2010-11-10 PPA:
Fixed: FP package was corrupted for PIC16.

V1.5.0 - 2010-11-08 PPA:
Modified: STATUS is preserved at startup so special bits may be tested by program.
Added: $PUSH/$POP directives for enhanced management of local compiler options.
Added: $SCRIPT directive to override normal linker script name.
Added: $OPTIMIZE_PARAMS directive to switch ON/OFF the procedure/functions parameters. WARNING: Possible compatibility issue with pure
EXTERNAL procedures and functions.
Fixed: Bad generated code (old bug) in IN internal subroutines; all processors.
Fixed: IDE bad behavior with "Reopen" menu for recent files.
Fixed: Bad file loaded if the required source also exists in the "current" windows directory (std FileSearch behavior...).
Added: Better assembler block: now identifiers are automatically translated to internal format.
Added: Now VAR arrays may be in EEPROM, with optional initial values. EEPROM VAR arrays cannot be passed as CONST or VAR parameters.
Fixed: Syntax error after a label inside a repeat-until loop.
Modified: Better analysis of interrupt context save: called procedures/functions are now analyzed at full nesting deep.
Added: Open array parameters.

For previous versions, see Changes.txt in the doc subdirectory.

V1.0.0 – 2006-01-14 PPA: Genesis and dark ages: IDE was a stone & burin version of EDLIN - Initial release of PMP, never distributed.

Document revision: A P M P D E V E L O P M E N T I S S U E S - R E V I S I O N H I S T O R Y Page 97/101

PIC MICRO PASCAL V1.6 - USER MANUAL

8 Index
A2D..

A2D_Get..91
A2D_Init...91
TA2D_ACQT..91
TA2D_Channels...91
TA2D_Clock ..91
TA2D_Mode...91
TA2D_Vref_Mode..91

ABS..70
ABSOLUTE..50
Address..28, 34, 50, 51, 54, 70, 75
AND..60, 61
ARCCOS..81
ARCSIN..81
ARCTAN...81
ARRAY...39, 40, 43, 48, 71, 73
Arrays...6, 24, 39, 40
ASM..69
Assembler..6, 11, 13, 14, 21, 38, 40, 50, 56
Assembler file...11
ASSIGN..74, 85, 90
Banking..50
BAUD...75
Binary...24
Bit number..51
BITS...45
BOOLEAN..39, 41, 45, 48, 52, 54, 61
BREAK...68
BY...28, 65
BYTE.................................39, 40, 41, 48, 51, 52, 54, 60, 62, 70, 72
CASE..62
CHAR...48, 52, 70, 72
CHR..70
CLR..73
CLRWDT..70
Code...6, 8, 9, 13, 25, 27, 31, 32, 36, 37, 38, 40, 41, 45, 51, 53, 54,
57, 59, 61, 63, 64, 66, 71, 75, 95
Conditional...13, 36, 37, 70
CONFIG...38
Configuration bits...27, 38
Configuration file..22
CONST...38, 39, 52, 54
Constant..24, 25, 26, 36, 39, 40, 43, 45, 59
CONTINUE...68
COS..81
DEC..73
DECLARED..36, 37, 48, 70
DEFINED...36, 37, 70
Defines...8, 13, 28, 34, 36, 41, 51
Delay routines..

DELAY...75
DELAY_CY..75
DELAY_MS..75
DELAY_NS..75
NOP...75

Delphi...6, 23, 24, 25, 26, 27, 36, 40, 52, 96
Directives...6, 27, 36, 37, 70
Directives..

ALL...30
ANALOGS...30
COMPARATORS...30
CR..28
CRLF..28
EEPROM...33
INT...34
INT_HIGH..34
INT_LOW...34
INTERRUPTS..30
LARGE...32
LONG...31
MEMORY...31
MULTIPLE..30
NORMAL..27
PLC..27

PORTS...30
RAM...30, 33
RESET...34
SHORT..31
SMALL...32
SPEED...31
UNIQUE...30
$C..27
$CODEGEN...27, 33, 61
$CONFIG...27
$DEPRECATED...28
$EEPROM...28
$EOL..28
$EXTENDED...28
$FREQUENCY..28
$I..29
$IDLOC..29
$INCLUDE...29
$INIT..30
$INITIALIZE...30
$INTERRUPTS..30
$JUMPS...31
$O..31
$OPTIM..31
$OPTIMIZE..31
$OPTIMIZE_PARAMS...31
$OSCCAL..31
$P...32
$POINTERS..32
$POP...32
$PROCESSOR..32
$PUSH...33
$RESERVED...33
$S...33
$SCRIPT..33
$SPACE...33
$STRINGS...34
$UERROR...34
$UWARNING...34
$V...34
$VARIABLES...34
$VECTORS..34
$W..35
$WARN..35
$WARNING..35

DISPOSE...75, 77
DIV...60
Divide...60
DO..65, 67
DOWNTO...65
DWORD...39, 48
Dynamic memory allocation...83
Dynamic memory allocation...

DISPOSE...75, 83
FREEMEM...76, 83
GETMEM...76, 83
NEW...77, 83

Dynamic records..46
EEPROM..49, 70, 71, 73, 75
EEPROM..

EEREAD..70
EEWRITE...75

ELSEIF...28, 63
Enumeration...43
ERROR..74
EXCLUDE..75
Exit...9
EXP..81
Expressions.............................27, 37, 39, 41, 53, 59, 60, 61, 70, 73
External..56
FALSE..42
Floating point..76, 81
FOR..28, 65, 66, 67, 68, 80
Forward..55, 80

Document revision: A I N D E X - I N D E X Page 98/101

PIC MICRO PASCAL V1.6 - USER MANUAL
FP flags..82
FP_FLAGS...76

FP_CLR...76
FP_IOP..82
FP_OVR...82
FP_UND...82

FREEMEM...76, 77
FREQUENCY..8, 26, 28, 42, 75
FSR..32
Function....25, 26, 31, 33, 36, 37, 40, 50, 51, 52, 53, 54, 55, 56, 59,
61, 70, 71, 80, 95
Functions.......................6, 26, 31, 36, 37, 49, 52, 55, 56, 57, 70, 75
GETMEM...75, 76
Global..8, 21, 26, 29, 37, 49, 50, 51, 56, 57
GOTO...80
Hardware..25
HD44780..85
HEAP..30
HEX..70
Hexadecimal..24, 70
HI..71
HIGH..71
Identifiers...23, 25, 36, 37, 38, 41, 51
IDLOC..42
IEEE...60
IF..36, 63
Implementation...26
IN..41, 67
INC...73
INCLUDE...6, 8, 14, 32, 41, 51, 56, 76
Initialization..26, 58, 75
Initialized..49, 54, 80
INPUT...74
INTEGER...48, 52, 60, 72
Interface...26
Internal...31, 38, 50, 57, 60, 61, 80, 95
Interrupt..25, 26, 34, 57, 69
Iterator ...67
KS107_108...

Circle..89
FillScreen...89
GetPixel...89
GLCD_Cmd...89
GLCD_CS1..88
GLCD_CS2..88
GLCD_CTRL_PORTx..88
GLCD_DATA_PORTx..88
GLCD_FONT_HEIGHT...88
GLCD_FONT_MAX_CHAR...88
GLCD_FONT_MIN_CHAR..88
GLCD_FONT_SPACING...88
GLCD_FONT_WIDTH...88
GLCD_Init..89
GLCD_OFF..88
GLCD_ON...88
GLCD_ReadByte...89
GLCD_SET_COLUMN..88
GLCD_SET_PAGE..88
GLCD_SET_TOP..88
GLCD_WriteByte...89
GlcdDATA..89
GlcdEMPTY...89
GlcdFILLED...89
GlcdHIDE...89
GlcdINST...89
GlcdOFF..89
GlcdON..89
GlcdREAD..89
GlcdSHOW..89
GlcdWRITE..89
Line..89
PlotData...89
PlotPixel...89
Rectangle...89
Text..89
TGLCD_FillMode...89
TGLCD_InitMode...89
TGLCD_PlotMode...89
TGLCD_RegisterMode..89

TGLCD_RW...89
TGLCD_String...89

LCD..85
CURSOR_MOVE_LEFT..86
CURSOR_MOVE_RIGHT...86
CURSOR_MOVE_TEXT...86
DISPLAY_CURSOR_BLINK..86
DISPLAY_CURSOR_FIXED..86
DISPLAY_CURSOR_OFF...86
DISPLAY_CURSOR_ON...86
DISPLAY_TEXT_OFF...86
DISPLAY_TEXT_ON...86
LCD_4BITS..85
LCD_4BITS_UPPER...85
LCD_8BITS..85
LCD_Clear...87
LCD_CNTRL_PORTA...85
LCD_CNTRL_PORTB...85
LCD_CNTRL_PORTC...85
LCD_CNTRL_PORTD...85
LCD_Cursor_Off..87
LCD_Cursor_On..87
LCD_CursorMoveMode...87
LCD_DATA_PORTA..85
LCD_DATA_PORTB..85
LCD_DATA_PORTC..85
LCD_DATA_PORTD..85
LCD_DisplayMode...87
LCD_GEN..85
LCD_GEN_10..85
LCD_GotoXY...87
LCD_Home..87
LCD_Init...87
LCD_LINES_1...85
LCD_LINES_2...85
LCD_LINES_4...85
LCD_READ..85
LCD_ShiftMode...87
LCD_String..86
LCD_User_Char_5x10..87
LCD_User_Char_5x8..87
LCD_Width...86
LCD_WIDTH_16..85
LCD_WIDTH_20..85
LCD_WIDTH_32..85
LCD_WIDTH_8..85
LCD_Write_Char...87
LCD_WriteString..87
LCD_X...87
LCD_Y...87
SHIFT_LEFT..86
SHIFT_RIGHT...86
SHIFT_TEXT...86

LENGTH...71
Library - A2D..91
Library - KS107_108..88
Library - LCD..85
Library - SERIAL..90
Limitations..8, 95
Linker..14
LN...82
LO...71
Logical operators..60
LONGINT...39, 48, 52, 60, 72
LONGWORD...39, 48, 52, 60, 72
LOOP...28, 64, 68
LOW...71
Main program.......................................12, 26, 28, 32, 37, 49, 57, 58
MAXINT..42
MAXLONGINT...42
MAXLONGWORD..42
MAXWORD..42
MEMAVAIL...42
Memory................6, 8, 13, 21, 28, 31, 32, 34, 45, 48, 50, 54, 71, 75
MOD16...23, 42
MOD16S...23, 42
MOD32...23, 42
MOD32S...42
MOD8...23, 42

Document revision: A I N D E X - I N D E X Page 99/101

PIC MICRO PASCAL V1.6 - USER MANUAL
MOVE...76
MPASM..6, 8, 9, 24, 32, 38, 41, 51, 95
MPTINY..6
MUL18..71
Multi-bits fields...45
MULTIPLE..57
NEW...75, 76, 77
NIL..42
NONE...27
NOP..70, 75
NOT..61
Open array...55
Optimizations...26
Optimize...31, 32
OPTION..77
OPTION_REG..77
Options...8, 12, 13, 14, 19
OR..60, 61
ORD...59, 71
OUT..54
OUTPUT..31, 74
Parameter...54
Pascal..........6, 10, 13, 19, 21, 23, 24, 27, 36, 37, 38, 41, 52, 70, 80
PI..42
PIC16 Enhanced..32
PIC18...32, 34
PLC..61
POINTER...43, 48
POW...82
PRED...71
Procedure..25, 26, 40, 50, 52
Procedures......................................6, 26, 49, 52, 55, 56, 57, 73, 74
Processor 6, 8, 12, 25, 26, 28, 31, 34, 49, 51, 54, 57, 58, 70, 75, 95
PROGRAM...25
Project..10, 12, 13, 14, 21, 26, 32, 34
Promotion...60
Pseudo constants...42
PWM...77
RAM...34, 40, 48, 49, 51, 52, 56, 71, 73
Range...43, 71, 72, 92
READ...78, 90
READLN...78, 90
REAL..39, 48, 60, 72
RECORD..43, 45, 48, 73
Records..6, 24, 45
Registers..6, 14, 32, 41, 70, 75
REPEAT...64, 68, 80
RESERVED..83
RESET...58, 70
Restrictions...62
RESULT...52
RETURN..28
ROL..73
ROMABLE..54
ROR...73
ROUND..82
SERIAL...

BAUD...75
InErrorCode...90
SerialPort_Input...90
SerialPort_InputReady..90
SerialPort_Output..90
SerialPort_OutputString...90
SerialString..90
USE_SERIALPORT_INPUT..90
USE_SERIALPORT_OUTPUT..90
USE_SERIALPORT_OUTPUTSTRING..................................90

SET..41
SFR..50, 51
SHORTINT...39, 48, 52, 60, 72
Side effect..53, 70
SIN...81
SINGLE..39, 48, 60, 72
SIZEOF..40, 71
SLEEP..70
SPEED...57
SQR..82
SQRT...82
STR..78, 79

STRING...40, 43, 48, 52, 71, 73
Strings..6, 8, 24, 39, 40, 48, 52, 71
SUCC...72
SWAP...79
Syntax..19
System constants...42
TAN...81
TO..33, 65
Tools menu...17
TRIS...79
TRUE..42
TRUNC...82
TYPE..25, 26, 43, 45, 48, 52
Underscore...38
UNIQUE...57
Unit..8, 12, 21, 23, 26, 37, 40, 49, 50, 58
UPCASE...72
USES...23, 25, 26, 37
VAR..32, 49, 51, 52, 54, 66
VERSION...42
VOLATILE..41, 50
Warning..8, 9, 13, 60, 75
WHILE..58, 64, 68, 80
WITH..62
WORD..39, 48, 54, 60, 71, 72
WRITE..23, 79, 85, 90
WRITELN...23, 79, 85, 90
XOR..60
@..50, 51
$ASMPATH..18
$CONFIG...33, 38
$DEFINE..36
$EDNAME..17
$ELSE..36
$ELSEIF...37
$ENDIF...36, 59
$EOL..79
$EXT()..17
$FREQUENCY...22
$HEXPATH...18
$IF..36
$IFDEF...36, 59
$IFEND...36, 37
$IFNDEF..36
$INITIALIZE..33
$INTERRUPTS..33, 57
$JUMPS...33
$NAME()...17
$OPTIMIZE..33, 57
$OSCCAL...33
$PATH()..17
$POINTERS...33
$PRJNAME..18
$PROCESSOR..18
$RESERVED..56
$SAVE..17
$SAVEALL..17
$SPACE...33
$UNDEF...36
$VARIABLES..56

Document revision: A I N D E X - I N D E X Page 100/101

PIC MICRO PASCAL V1.6 - USER MANUAL

9 User annotations
This page is left blank for user annotations.

Document revision: A U S E R A N N O T A T I O N S - U S E R A N N O T A T I O N S Page 101/101

	1 Overview
	1.1 Legal stuff
	1.2 BSD License

	2 Operation
	2.1 Operating system
	2.2 MPLAB® suite
	2.3 Console version
	2.3.1 Command line usage
	2.3.2 Message output from PMP compiler
	2.3.3 Exit code

	2.4 Windows version
	2.4.1 PMP Project
	2.4.1.1 Project general options
	2.4.1.2 Compiler options
	2.4.1.3 Assembler options
	2.4.1.4 Linker options
	2.4.1.5 Processor options
	2.4.1.6 Version and comments

	2.4.2 Code Explorer
	2.4.3 The tools menu
	2.4.4 Syntax highlighting and other editor options

	2.5 Generated files
	2.6 Configuration file

	3 Language features
	3.1 BNF representation in this document
	3.2 Keywords
	3.3 Constant formats
	3.4 Program structure
	3.5 Unit structure
	3.6 Comments
	3.7 Directives
	3.7.1 $C | $CODEGEN - PLC mode code
	3.7.2 $CONFIG - Configuration bits
	3.7.3 $DEPRECATED – Define a unit, procedure or function as obsolete
	3.7.4 	$EEPROM - Define useable EEPROM area
	3.7.5 $EOL – Define end of line behavior
	3.7.6 $EXTENDED – Enable / disable extended Pascal syntax - NEW! (V1.6.0)
	3.7.7 $FREQUENCY - Processor frequency
	3.7.8 $IDLOC Define user ID bytes
	3.7.9 $I | $INCLUDE - Include source file
	3.7.10 $INIT | $INITIALIZE - Define start-up initializations
	3.7.11 $INTERRUPTS – Enable / disable / define interrupts
	3.7.12 $JUMPS – Define jumps range
	3.7.13 $O | $OPTIM | $OPTIMIZE - Define optimization mode
	3.7.14 $OPTIMIZE_PARAMS - Define parameter passing optimization mode
	3.7.15 $OSCCAL – Activates or deactivates OSCCAL processor feature
	3.7.16 $P | $POINTERS - Define pointers size
	3.7.17 $POP – Restore compiler options
	3.7.18 $PROCESSOR - Define processor
	3.7.19 $PUSH – Save compiler options
	3.7.20 $RESERVED RAM | EEPROM - Specify a memory region as unusable
	3.7.21 $SCRIPT – Define the linker script to use
	3.7.22 $S | $SPACE - Switch memory allocation to RAM or EEPROM
	3.7.23 $STRINGS - Set default string size
	3.7.24 $UERROR - Generate a compiler error
	3.7.25 $UWARNING - Generate a compiler warning
	3.7.26 $V $VARIABLES Define the memory region for RAM variables
	3.7.27 $VECTORS - Define reset and interrupt vectors
	3.7.28 $W | $WARN | $WARNING - Define a compiler warnings behavior
	3.7.29 Conditional compilation

	3.8 Configuration bits declaration as CONST
	3.9 Identifiers
	3.10 Constant declaration
	3.10.1 Special constants behaviors
	3.10.2 Pseudo SET, IN keyword
	3.10.3 System constants and pseudo variables

	3.11 Type declaration
	3.11.1 Pointer types
	3.11.2 Records
	3.11.2.1 Dynamic records

	3.12 Variables declaration
	3.12.1 Special behaviors
	3.12.2 Special considerations about memory allocation
	3.12.3 Some VAR Examples
	3.12.4 Banking
	3.12.5 Variables internal names (as seen by the assembler)
	3.12.6 Declaration at an absolute address
	3.12.7 Declaration as VOLATILE
	3.12.8 Special usage of bit number or reference

	3.13 SFR (Special Function Register) declaration
	3.14 Procedure and function declaration
	3.14.1 Function RETURN statement - NEW! (V1.6.0):
	3.14.2 Side effect with string buffer and function calls
	3.14.3 Parameter passing convention
	3.14.4 Open array parameters
	3.14.5 Forward procedures and functions
	3.14.6 External procedures and functions
	3.14.6.1 Memory allocation in assembler modules

	3.15 Interrupt special procedures
	3.16 Main program block
	3.17 Unit initialization block

	4 Statements
	4.1 Assignments and expressions
	4.1.1 SHR & SHL "normal" behaviors
	4.1.2 Divide operator /
	4.1.3 Logical operators
	4.1.4 Operand size promotion, signed or unsigned
	4.1.5 Bit results and related special behaviors
	4.1.6 Bit expressions and statements

	4.2 WITH statement
	4.3 CASE statement
	4.4 IF statement
	4.5 ELSEIF statement - NEW! (V1.6.0)
	4.6 WHILE statement
	4.7 REPEAT statement
	4.8 LOOP statement
	4.9 FOR statement
	4.10 FOR iterator NEW! (V1.6.0)
	4.11 BREAK statement
	4.12 CONTINUE statement
	4.13 ASM statement
	4.14 Implied PIC statements
	4.15 Built-in functions
	4.16 Built-in procedures
	4.17 Branching statements
	4.18 Code optimization considerations
	4.19 Floating point
	4.19.1 Overview
	4.19.2 Supported FP built-in functions
	4.19.3 FP flags

	4.20 Dynamic Memory Allocation
	4.20.1 Overview
	4.20.2 How it works
	4.20.3 Error treatment

	5 Libraries
	5.1 Overview
	5.2 Global usage rules
	5.3 The LCD unit
	5.3.1 Supported features
	5.3.2 Pin assignments
	5.3.3 Conditional compilation
	5.3.4 Constants
	5.3.5 Types
	5.3.6 Interface

	5.4 The KS107_108 (former GLCD) unit
	5.4.1 Supported features
	5.4.2 Conditional compilation
	5.4.3 Pin assignments
	5.4.4 Constants
	5.4.5 Types
	5.4.6 Variables
	5.4.7 Interface

	5.5 The SERIAL unit
	5.5.1 Supported features
	5.5.2 Conditional compilation
	5.5.3 Constants
	5.5.4 Types
	5.5.5 Variables
	5.5.6 Interface

	5.6 The A2D unit
	5.6.1 Supported features
	5.6.2 Conditional compilation
	5.6.3 Constants
	5.6.4 Types
	5.6.5 Variables
	5.6.6 Interface

	6 Compiler messages
	6.1 Error messages
	6.2 Warning messages

	7 PMP development issues
	7.1 Known limitations
	7.2 To do list
	7.3 Not to do list
	7.4 Limited support
	7.5 About the author
	7.6 Development tools and contributions
	7.7 Revision history

	8 Index
	9 User annotations

